Pan-third-polar environmental change and green silk road construction

Brief Introduction: Pan-third-polar environmental change and green silk road construction

Number of Datasets: 1359

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of Meteorological elements gradient of A’rou Superstation, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of Meteorological elements gradient of A’rou Superstation, 2021)

    This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of A’rou Superstation from January 1 to December 31, 2021. The site (100.464° E, 38.047° N) was located on a cold grassland surface in the Caodaban village, A’rou Town, Qilian County, Qinghai Province. The elevation is 3033 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45C; 1, 2, 5, 10, 15 and 25 m, towards north), wind speed and direction profile (Windsonic; 1, 2, 5, 10, 15 and 25 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 5 m, towards south), four-component radiometer (CNR4; 5 m, towards south), two infrared temperature sensors (SI-111; 5 m, towards south, vertically downward), photosynthetically active radiation (PAR-LITE; 5 m, towards south, vertically upward), soil heat flux (HFP01SC; 2 duplicates, -0.06 m, 2 m in the south of tower), soil temperature profile (109; 0, -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m), and soil moisture profile (CS616; -0.02, -0.04, -0.06, -0.1, -0.15, -0.2, -0.3, -0.4, -0.6, -0.8, -1.2, -1.6, -2, -2.4, -2.8 and -3.2 m, 3 duplicates in -0.04 m and -0.1 m). The observations included the following: air temperature and humidity (Ta_1 m, Ta_2 m, Ta_5 m, Ta_10 m, Ta_15 m and Ta_25 m; RH_1 m, RH_2 m, RH_5 m, RH_10 m, RH_15 m and RH_25 m) (℃ and %, respectively), wind speed (Ws_1 m, Ws_2 m, Ws_5 m, Ws_10 m, Ws_15 m and Ws_25 m) (m/s), wind direction (WD_1 m, WD_2 m, WD_5 m, WD_10 m, WD_15 m and WD_25 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/(s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, Gs_2) (W/m2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm_1, Ts_4 cm_2, Ts_4 cm_3, Ts_6 cm, Ts_10 cm_1, Ts_10 cm_2, Ts_10 cm_3, Ts_15 cm, Ts_20 cm, Ts_30 cm, Ts_40 cm, Ts_60 cm, Ts_80 cm, Ts_120 cm, Ts_160 cm, Ts_200 cm, Ts_240 cm, Ts_280 cm and Ts_320 cm) (℃), and soil moisture (Ms_2 cm, Ms_4 cm_1, Ms_4 cm_2, Ms_4 cm_3, Ms_6 cm, Ms_10 cm_1, Ms_10 cm_2, Ms_10 cm_3, Ms_15 cm, Ms_20 cm, Ms_30 cm, Ms_40 cm, Ms_60 cm, Ms_80 cm, Ms_120 cm, Ms_160 cm, Ms_200 cm, Ms_240 cm, Ms_280 cm and Ms_320 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-21 872 93

  • Policy data set of national and local governments on ecological problems in Qilian Mountains (1979-2021)

    Policy data set of national and local governments on ecological problems in Qilian Mountains (1979-2021)

    The data includes ecological policy documents after 1979, involving laws, regulations, terms and schemes on Ecological Governance and ecological management at the national and local government levels. The data combed the evolution process of the country in ecological and environmental governance, as well as the environmental strategies established in different development periods. The research group collected various documents of ecological policies on the government's official website and local yearbooks every year from 2018 to 2021. In order to ensure the relative integrity and pertinence of the data, this study sorted and selected the policy texts according to the following principles: ① the main sources of policies are the government's official website and its subordinate departments; ② Documents in line with ecological policies; ③ Select laws and regulations, plans, opinions, methods, detailed rules, regulations, announcements, notices, resolutions and other documents reflecting ecological environment policies. Construct the categories of the policy documents studied, that is, determine the perspective of analyzing the policy text, and define the primary and secondary categories, so that the chief coder and sub coder can understand it uniformly; ② Code the policies one by one after preparing the coding table according to the main category, that is, after carefully reading the policy content, if its content meets the analysis dimension required by the category construction table, fill its code into the coding table; ③ The data of this study is based on the official website and field policy research, which can effectively distinguish the contents of categories involved in the policy text. Therefore, the content analysis of this study has a good level of validity The innovation and evolution of policies change the impact of human activities on the environment to a certain extent, and the guidance and impact of ecological policies on environmentally vulnerable areas are more obvious. If we can fully grasp the dynamic change process of ecological policies and understand the evolution law of ecological policies, we can formulate ecological policies conducive to improving the environment, This paper studies the evolution law of Qilian mountain ecological policy issued since 1979 by using the content analysis method, in order to provide a scientific basis for the formulation of Qilian mountain ecological policy

    2022-05-20 372 95

  • Remote sensing inversion dataset of the spatial distribution of the Qilian Mountains "Mountains, Waters, Forests, Farmland, Lakes and Grassland”(1985)

    Remote sensing inversion dataset of the spatial distribution of the Qilian Mountains "Mountains, Waters, Forests, Farmland, Lakes and Grassland”(1985)

    This data set is based on the remote sensing monitoring data set of landuse status in China, Chinese Academy of Sciences, and the data of land use types of Qilian Mountain National Park in 1985 through cutting, splicing and other operations. Data production is the vector data generated by manual visual interpretation using Landsat TM / ETM Remote sensing images as the main data source. Landuse types include cropland, forest, shrub, grassland, wetland, water, tundra, impervious surface, bareland, glacier and permanent snow. We can analyze the historical landuse types in Qilian mountain area, and analyze the changes of land use types in Qilian mountain area combined with the current landuse type data.

    2022-05-20 341 91

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Zhangye wetland station, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Zhangye wetland station, 2021)

    This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (100.44640° E, 38.97514° N) was located in the Zhangye City in Gansu Province. The elevation is 1460 m. The EC was installed at a height of 5.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-20 694 69

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Sidaoqiao superstation, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Sidaoqiao superstation, 2021)

    This dataset contains the flux measurements from the Sidaoqiao superstation eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (101.1374° E, 42.0012° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 873 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500DS) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-20 725 69

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Yakou station, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Yakou station, 2021)

    This dataset contains the flux measurements from the Yakou station eddy covariance system (EC) in the upper reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (100.2421° E, 38.0142° N) was located in the Qilian County in Qinghai Province. The elevation is 4148 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The power loss occurs occasionally at this site. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-20 1210 70

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of mixed forest station, 2021)

    This dataset contains the flux measurements from the mixed forest station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (101.1335° E, 41.9903° N) was located in the Sidaoqiao County, in Ejina Banner in Inner Mongolia Autonomous Region . The elevation is 874 m. The EC was installed at a height of 3.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3B & Li7500DS) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The water vapor density data were rejected when the negative values occurred. CO2 data were missing due to the sensor malfunction after November 3. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-20 599 70

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Jingyangling station, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Jingyangling station, 2021)

    This dataset contains the flux measurements from the Jingyangling station eddy covariance system (EC) in the upstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (101.1160E, 37.8384N) was located in the Jingyangling, near Qilian County in Qinghai Province. The elevation is 3750 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3B & Li7500DS) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during insufficient power supply, data were missing occasionally. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-20 739 89

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Huazhaizi station, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Huazhaizi station, 2021)

    This dataset contains the flux measurements from the Huazhaizi station eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (100.3201° E, 38.7659° N) was located in the Zhangye City in Gansu Province. The elevation is 1731 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-19 604 54

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of desert station, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of desert station, 2021)

    This dataset contains the flux measurements from the desert station eddy covariance system (EC) in the downstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (100.9872° E, 42.1135° N) was located in the Ejina Banner in Inner Mongolia Autonomous Region. The elevation is 1054 m. The EC was installed at a height of 4.7 m, and the sampling rate was 10 Hz. The eddy covariance was the closed-path type with the sonic anemometer facing north. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-19 604 60

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Dashalong station, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Dashalong station, 2021)

    This dataset contains the flux measurements from the Dashalong station eddy covariance system (EC) in the upstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (98.9406° E, 38.8399° N) was located in the Qilian County in Qinghai Province. The elevation is 3739 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500RS) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the power loss and the problems of datalogger, data were missing occasionally in the winter. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-19 1087 73

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Daman Superstation, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of Daman Superstation, 2021)

    This dataset contains the flux measurements from the Daman superstation eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (100.37223° E, 38.85551° N) was located in the Zhangye City in Gansu Province. The elevation is 1556.06 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the malfunction of power, data during May 15 to June 12 were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-19 728 64

  • Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of A’rou Superstation, 2021)

    Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (eddy covariance system of A’rou Superstation, 2021)

    This dataset contains the flux measurements from the A’rou superstation eddy covariance system (EC) in the upstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2021. The site (100.372° E, 38.856° N) was located in the Daban Village, near Qilian County in Qinghai Province. The elevation is 3033 m. The EC was installed at a height of 3.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.

    2022-05-19 859 84

  • Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

    Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

    The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.

    2022-05-17 5311 65

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Guazhou Station, 2020)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Guazhou Station, 2020)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Guazhou Station from January 1 to December 31, 2021. The site (95.673E, 41.405N) was located on a desert in the Liuyuan Guazhou, which is near Jiuquan city, Gansu Province. The elevation is 2014 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, 8, 16, 32, and 48 m, towards north), wind speed and direction profile (windsonic; 2, 4, 8, 16, 32, and 48 m, towards north), air pressure (1.5 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m, -0.6m and -0.8m in south of tower), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_2_1, Ta_1_4_1, Ta_1_8_1, Ta_1_16_1, Ta_1_32_1 and Ta_1_48_1; RH_2 m, RH_1_2_1, RH_1_4_1, RH_1_8_1, RH_1_16_1, RH_1_32_1, and RH_1_48_1) (℃ and %, respectively), wind speed (WS_1_2_1, WS_1_4_1, WS_1_8_1, WS_1_16_1, WS_1_32_1 and WS_1_48_1) (m/s), wind direction (WD_1_2_1, WD_1_4_1, WD_1_8_1, WD_1_16_1, WD_1_32_1 and WD_1_48_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1, TS_1_20_1, TS_1_40_1, TS_1_60_1 and TS_1_80_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1, SWC_1_20_1, SWC_1_40_1, SWC_1_60_1 and SWC_1_80_1) (%, volumetric water content),soil water potential (SWP_1_5_1, SWP_1_10_1, SWP_1_20_1, SWP_1_40_1, SWP_1_60_1 and SWP_1_80_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1, EC_1_20_1, EC_1_40_1, EC_1_60_1 and EC_1_80_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.

    2022-05-17 1143 0

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Dunhuang Station, 2021)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Dunhuang Station, 2021)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dunhuang Station from January 1 to December 31, 2021. The site (93.709° E, 40.348° N) was located on a wetland in the Dunhuang west lake, Gansu Province. The elevation is 994 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8 m, towards north), wind speed and direction profile (windsonic; 4m and 8 m, towards north), air pressure (1 m), rain gauge (4 m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.05 and -0.2 m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1、SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1、TS_1_20_1) (℃), soil moisture (SWC_1_5_1、SWC_1_20_1) (%, volumetric water content), soil conductivity (SWC_1_5_1、SWC_1_20_1)(μs/cm), sun time(Sun_time_1_4_1). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.

    2022-05-17 570 0

  • Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Liancheng Station, 2021)

    Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Liancheng Station, 2021)

    The data set contains the phenological camera observation data of Sidalong station of Lanzhou University cold and arid area scientific observation network in Heihe River Basin from February 1, 2021 to September 15, 2021. The longitude and latitude of the observation points are 99.926e, 38.428n and 3146m above sea level. The data is processed using the software package independently developed by Beijing Normal University. The phenological camera collects data in a downward way. The resolution of shooting data is 2592 * 1944, and the shooting time and frequency can be specified. For the calculation of greenness index phenological period, it is necessary to calculate the relative greenness index according to the region of interest (GCC, green chromatographic coordinate formula is GCC = g / (R + G + b), and R, G and B are the pixel values of red, green and blue channels of the image), then fill in the invalid values and filter and smooth them, and finally determine the key phenological period parameters according to the growth curve fitting, such as the start date, peak and end date of the growth season; For the coverage, data preprocessing is carried out first, the image with less strong illumination is selected, and then the image is divided into vegetation and soil. The proportion of vegetation pixels in the calculation area of each image is calculated as the corresponding coverage of the image. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user. The filtered result is the final time series coverage. This data set includes the relative greenness index (GCC).

    2022-05-17 588 0

  • Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Suganhu Station, 2021)

    Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Suganhu Station, 2021)

    The data set contains the phenological camera observation data of suganhu station of Lanzhou University cold and arid area scientific observation network in halteng River Basin of Qaidam Basin from January 1, 2021 to December 31, 2021. The longitude and latitude of the observation points are 94.125 ° e, 38.992n and 2798m above sea level. The data is processed using the software package independently developed by Beijing Normal University. The phenological camera collects data in a downward way. The resolution of shooting data is 2592 * 1944, and the shooting time and frequency can be specified. For the calculation of greenness index phenological period, it is necessary to calculate the relative greenness index according to the region of interest (GCC, green chromatographic coordinate formula is GCC = g / (R + G + b), and R, G and B are the pixel values of red, green and blue channels of the image), then fill in the invalid values and filter and smooth them, and finally determine the key phenological period parameters according to the growth curve fitting, such as the start date, peak and end date of the growth season; For the coverage, data preprocessing is carried out first, the image with less strong illumination is selected, and then the image is divided into vegetation and soil. The proportion of vegetation pixels in the calculation area of each image is calculated as the corresponding coverage of the image. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user. The filtered result is the final time series coverage. This data set includes the relative greenness index (GCC). The phenological camera of the site adjusted the shooting angle on August 12, 2021.

    2022-05-17 608 0

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Suganhu station, 2021)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Suganhu station, 2021)

    This dataset contains the flux measurements from the Suganhu station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 27 in 2021. The site (94.12E, 38.99N was located in a desert in Suganhu, which is in Gansu Province. The elevation is 2823 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

    2022-05-17 699 0

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Xiyinghe station, 2021)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Xiyinghe station, 2021)

    This dataset contains the flux measurements from the Xiyinghe station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 27 in 2021. The site (101.853E, 37.561N) was located on a alpine meadow in the Menyuan, Qinghai Province. The elevation is 3639 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

    2022-05-17 1180 0