Pan-third-polar environmental change and green silk road construction

Brief Introduction: Pan-third-polar environmental change and green silk road construction

Number of Datasets: 1356

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Minqin station, 2021)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Minqin station, 2021)

    This dataset contains the flux measurements from the Minqin station eddy covariance system (EC) in the middle reaches of the Shiyanghe integrated observatory network from January 1 to December 27 in 2021. The site (103.668E, 39.208N) was located on a alpine meadow in the Wuwei, Gansu Province. The elevation is 1020 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

    2022-05-17 313 0

  • Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Liancheng Station, 2021)

    Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Liancheng Station, 2021)

    The data set contains the phenological camera observation data of Minqin station of Lanzhou University cold and arid area scientific observation network in Shiyang River Basin from March 1, 2021 to December 31, 2021. The longitude and latitude of the observation points are 103.668e, 39.208n and 1020m above sea level. The data is processed using the software package independently developed by Beijing Normal University. The phenological camera collects data in a downward way. The resolution of shooting data is 2592 * 1944, and the shooting time and frequency can be specified. For the calculation of greenness index phenological period, it is necessary to calculate the relative greenness index according to the region of interest (GCC, green chromatographic coordinate formula is GCC = g / (R + G + b), and R, G and B are the pixel values of red, green and blue channels of the image), then fill in the invalid values and filter and smooth them, and finally determine the key phenological period parameters according to the growth curve fitting, such as the start date, peak and end date of the growth season; For the coverage, data preprocessing is carried out first, the image with less strong illumination is selected, and then the image is divided into vegetation and soil. The proportion of vegetation pixels in the calculation area of each image is calculated as the corresponding coverage of the image. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user. The filtered result is the final time series coverage. This data set includes the relative greenness index (GCC).

    2022-05-17 284 0

  • Cold and Arid Research Network of Lanzhou university (phenology camera observation data set of Liancheng Station,2021)

    Cold and Arid Research Network of Lanzhou university (phenology camera observation data set of Liancheng Station,2021)

    The data set contains the phenological camera observation data of Liancheng station of Lanzhou University cold and arid area scientific observation network in Datong River Basin from January 1, 2021 to December 31, 2021. The longitude and latitude of the observation points are 102.737e, 36.692n and 2903m above sea level. The data is processed using the software package independently developed by Beijing Normal University. The phenological camera collects data in a downward way. The resolution of shooting data is 2592 * 1944, and the shooting time and frequency can be specified. For the calculation of greenness index phenological period, it is necessary to calculate the relative greenness index according to the region of interest (GCC, green chromatographic coordinate formula is GCC = g / (R + G + b), and R, G and B are the pixel values of red, green and blue channels of the image), then fill in the invalid values and filter and smooth them, and finally determine the key phenological period parameters according to the growth curve fitting, such as the start date, peak and end date of the growth season; For the coverage, data preprocessing is carried out first, the image with less strong illumination is selected, and then the image is divided into vegetation and soil. The proportion of vegetation pixels in the calculation area of each image is calculated as the corresponding coverage of the image. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user. The filtered result is the final time series coverage. This data set includes the relative greenness index (GCC).

    2022-05-17 298 0

  • Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Xiyinghe Station, 2021)

    Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Xiyinghe Station, 2021)

    The data set contains the phenological camera observation data of xiyinghe station of Lanzhou University cold and arid area scientific observation network in Shiyang River Basin from January 1, 2021 to December 31, 2021. The longitude and latitude of the observation points are 101.855e, 37.561n and the altitude is 3616m. The data is processed using the software package independently developed by Beijing Normal University. The phenological camera collects data in a downward way. The resolution of shooting data is 2592 * 1944, and the shooting time and frequency can be specified. For the calculation of greenness index phenological period, it is necessary to calculate the relative greenness index according to the region of interest (GCC, green chromatographic coordinate formula is GCC = g / (R + G + b), and R, G and B are the pixel values of red, green and blue channels of the image), then fill in the invalid values and filter and smooth them, and finally determine the key phenological period parameters according to the growth curve fitting, such as the start date, peak and end date of the growth season; For the coverage, data preprocessing is carried out first, the image with less strong illumination is selected, and then the image is divided into vegetation and soil. The proportion of vegetation pixels in the calculation area of each image is calculated as the corresponding coverage of the image. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user. The filtered result is the final time series coverage. This data set includes the relative greenness index (GCC).

    2022-05-17 257 0

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Guazhou station, 2021)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Guazhou station, 2021)

    This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 27 in 2021. The site (95.673E, 41.405N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2016 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format.

    2022-05-17 342 0

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Liancheng station, 2021)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Liancheng station, 2021)

    This dataset contains the flux measurements from the Guazhou station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to December 27 in 2021. The site (102.73E, 36.692N) was located in a desert in Liuyuan Guazhou, which is near Jiuquan city in Gansu Province. The elevation is 2903 m. The EC was installed at a height of 4.0 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

    2022-05-17 428 0

  • Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Guazhou Station, 2021)

    Cold and Arid Research Network of Lanzhou university (Phenology camera observation data set of Guazhou Station, 2021)

    The data set contains the phenological camera observation data of Guazhou station of Lanzhou University cold and arid area scientific observation network in Shule River Basin from January 9, 2021 to December 31, 2021. The longitude and latitude of the observation points are 95.673e, 41.405n and the altitude is 2014m. The data is processed using the software package independently developed by Beijing Normal University. The phenological camera collects data in a downward way. The resolution of shooting data is 2592 * 1944, and the shooting time and frequency can be specified. For the calculation of greenness index phenological period, it is necessary to calculate the relative greenness index according to the region of interest (GCC, green chromatographic coordinate formula is GCC = g / (R + G + b), and R, G and B are the pixel values of red, green and blue channels of the image), then fill in the invalid values and filter and smooth them, and finally determine the key phenological period parameters according to the growth curve fitting, such as the start date, peak and end date of the growth season; For the coverage, data preprocessing is carried out first, the image with less strong illumination is selected, and then the image is divided into vegetation and soil. The proportion of vegetation pixels in the calculation area of each image is calculated as the corresponding coverage of the image. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user. The filtered result is the final time series coverage. This data set includes the relative greenness index (GCC). The camera was adjusted on October 2021.

    2022-05-17 308 0

  • Cold and Arid Research Network of Lanzhou university (eddy covariance system of Sidalong station, 2021)

    Cold and Arid Research Network of Lanzhou university (eddy covariance system of Sidalong station, 2021)

    This dataset contains the flux measurements from the Sidalong station eddy covariance system (EC) in the middle reaches of the Heihe integrated observatory network from January 1 to Dec 19 in 2021. The site (99.926E, 38.428N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3146 m. The EC was installed at a height of 4.0 m above the canopy , and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references.

    2022-05-17 300 0

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Xiyinghe Station, 2021)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Xiyinghe Station, 2021)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Xiyinghe Station from January 1 to December 31, 2021. The site (101.853E, 37.561N) was located in Wuwei, Gansu Province. The elevation is 3614m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (2, 4, and 8 m, towards north), wind speed and direction profile (windsonic; 2, 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.05, -0.2 and -0.4 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_2_1, Ta_1_4_1, and Ta_1_8_1; RH_1_2_1, RH_1_4_1and RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_2_1, WS_1_4_1 and WS_1_8_1) (m/s), wind direction (WD_1_2_1, WD_1_4_1 and WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s/m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_20_1 and TS_1_40_1) (℃), soil moisture (SWC_1_5_1, SWC_1_20_1 and SWC_1_40_1) (%, volumetric water content), soil water potential (SWP_1_5_1, SWP_1_20_1 and SWP_1_40_1)(kpa) , soil conductivity (EC_1_5_1, EC_1_20_1 and EC_1_40_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. The air pressure data were rejected because of program error; (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.

    2022-05-17 260 0

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Suganhu Station, 2021)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Suganhu Station, 2021)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Suganhu Station from January 1 to December 31, 2021. The site (94.125° E, 38.992° N) was located on a wetland in the Suganhu west lake, Gansu Province. The elevation is 2823 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4m and 8m, towards north), wind speed and direction profile (windsonic; 4m and 8m, towards north), air pressure (1m), rain gauge (4m), infrared temperature sensors (4 m, towards south, vertically downward), soil heat flux (-0.05 and -0.1m ), soil temperature/ moisture/ electrical conductivity profile (below the vegetation in the south of tower, -0.1, -0.2 and -0.4m), photosynthetically active radiation (4 m, towards south), four-component radiometer (4 m, towards south), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing longwave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_10_1, TS_1_20_1, TS_1_40_1) (℃), soil moisture (SWC_1_10_1, SWC_1_20_1, SWC_1_40_1) (%, volumetric water content), soil conductivity (EC_1_10_1, EC_1_20_1, EC_1_40_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.

    2022-05-17 764 0

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Sidalong Station, 2021)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Sidalong Station, 2021)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Sidalong Station from January 1 to December 31, 2021. The site (99.926°E, 38.428°N) was located on a forest in the Kangle Sunan, which is near Zhangye city, Gansu Province. The elevation is 3146 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (1, 2, 13, 24, and 48 m), wind speed and direction profile (windsonic; 1, 2, 13, 24, and 48 m), air pressure (1.5 m), rain gauge (24 m), infrared temperature sensors (4 m and 30m, vertically downward), photosynthetically active radiation (4 m and 30m), soil heat flux (-0.05 m and -0.1m), soil temperature/ moisture/ electrical conductivity profile -0.05, -0.1m, -0.2m, -0.4m and -0.6mr), four-component radiometer (30 m, towards south), sunshine duration sensor(30 m, towards south). The observations included the following: air temperature and humidity (Ta_1_1_1, Ta_1_2_1, Ta_1_13_1, Ta_1_24_1 and Ta_1_48_1; RH_1_1_1, RH_1_2_1, RH_1_13_1, RH_1_24_1 and RH_1_48_1) (℃ and %, respectively), wind speed (WS_1_1_1, WS_1_2_1, WS_1_13_1, WS_1_24_1, and WS_1_48_1) (m/s), wind direction (WD_1_1_1, WD_1_2_1, WD_1_13_1, WD_1_24_1, and WD_1_48_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_24_1) (mm), four-component radiation (SWIN_1_30_1, incoming shortwave radiation; SWOUT_1_30_1, outgoing shortwave radiation; LWIN_1_30_1, incoming longwave radiation; LWOUT_1_30_1, outgoing longwave radiation; RN_1_30_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1, TC_1_30_1) (℃), photosynthetically active radiation (PPFD_1_4_1, PPFD_1_30_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1, TS_1_20_1, TS_1_40_1 and TS_1_60_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1, SWC_1_20_1, SWC_1_40_1 and SWC_1_60_1) (%, volumetric water content),soil water potential (SWP_1_5_1, SWP_1_10_1, SWP_1_20_1, SWP_1_40_1 and SWP_1_60_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1, EC_1_20_1, EC_1_40_1 and EC_1_60_1)(μs/cm), Sun_time_1_30_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.

    2022-05-17 316 0

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Minqin Station, 2021)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Minqin Station, 2021)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Minqin Station from January 1 to December 31, 2021. The site (103.668E, 39.208N) was located in Minqin, Gansu Province. The elevation is 1020 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4, and 8 m, towards north), air pressure (1.5 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (-0.05 m and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.1 and -0.2 m in south of tower), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WD_1_4_1, WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s/m^2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_10_1, TS_1_20_1) (℃), soil moisture (SWC_1_10_1, SWC_1_10_1) (%, volumetric water content), soil water potential (SWP_1_10_1 , SWP_1_20_1)(kpa) , soil conductivity (EC_1_10_1, EC_1_20_1) (μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.

    2022-05-17 252 0

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Linze Station, 2021)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Linze Station, 2021)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Linze Station from January 1 to December 31, 2021. The site (100.062° E, 39.238° N) was located on a cropland (maize surface) in the Guzhai Xinghua, which is near Zhangye city, Gansu Province. The elevation is 1402 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1 m), rain gauge (4 m), four-component radiometer (4 m, towards south), infrared temperature sensors (4 m, towards south, vertically downward), photosynthetically active radiation (4 m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (-0.05 and -0.2m), sunshine duration sensor (4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1, Ta_1_8_1; RH_1_4_1, RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1, WS_1_8_1) (m/s), wind direction (WS_1_4_1, WS_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1 outgoing long wave radiation; RN_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_20_1) (℃), soil moisture (SWC_1_5_1, SWC_1_20_1) (%, volumetric water content), soil water potential(SWP_1_5_1, SWP_1_20_1), soil conductivity (EC_1_5_1, EC_1_20_1) (μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-10 10:30.

    2022-05-17 274 0

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Liancheng Station, 2021)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Liancheng Station, 2021)

    This dataset includes data recorded by the Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Liancheng Station from January 4 to December 31, 2021. The site (102.737E, 36.692N) was located on a forest in the Tulugou national forest park, which is near Liancheng city, Gansu Province. The elevation is 2903 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (4 and 8 m, towards north), wind speed and direction profile (windsonic; 4 and 8 m, towards north), air pressure (1.5 m), rain gauge (2 m), four-component radiometer (4m, towards south), infrared temperature sensors (4m, towards south, vertically downward), photosynthetically active radiation (4m, towards south), soil heat flux (2 duplicates below the vegetation; -0.05 and -0.1m in south of tower), soil temperature/ moisture/ electrical conductivity profile (below the vegetation;-0.05 and -0.1m in south of tower), sunshine duration sensor(4 m, towards south). The observations included the following: air temperature and humidity (Ta_1_4_1 and Ta_1_8_1; RH_1_4_1 and RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_4_1 and WS_1_8_1) (m/s), wind direction (WD_1_4_1 and WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn_1_4_1, net radiation) (W/m^2), infrared temperature (TC_1_4_1) (℃), photosynthetically active radiation (PPFD_1_1_1) (μmol/ (s m-2)), soil heat flux (SHF_1_5_1, SHF_1_10_1) (W/m^2), soil temperature (TS_1_5_1, TS_1_10_1) (℃), soil moisture (SWC_1_5_1, SWC_1_10_1) (%, volumetric water content), soil water potential (SWP_1_5_1, SWP_1_10_1)(kpa), soil conductivity (EC_1_5_1, EC_1_10_1)(μs/cm), Sun_time_1_4_1 (h). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. 2021.6.13-3021.9.8, the data is missing because the wire is bitten off. 8m wind speed and direction sensor failure; 5 and 10cm soil temperature/ moisture/ electrical conductivity sensor failure; 5 and 10cm soil water potential sensor failure; 4m infrared temperature sensor failure. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-8-20 10:30.

    2022-05-17 769 0

  • Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Dayekou Station, 2021)

    Cold and Arid Research Network of Lanzhou university (an observation system of Meteorological elements gradient of Dayekou Station, 2021)

    This dataset includes data recorded by Cold and Arid Research Network of Lanzhou university obtained from an observation system of Meteorological elements gradient of Dayekou Station from January 1 to December 31, 2021. The site (100.286° E, 38.556° N) was located on a glassland in the Dayekou, which is near Zhangye city, Gansu Province. The elevation is 2694 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (8 m), air pressure (2 m), rain gauge (2 m), infrared temperature sensors (2 m, towards south, vertically downward), soil heat flux (below the vegetation, -0.05 m; towards south), soil temperature/moisture/electrical conductivity profile (-0.05m) photosynthetically active radiation (2 m, towards south), four-component radiometer (2 m, towards south), sunshine duration sensor(2 m, towards south). The observations included the following: air temperature and humidity (Ta_1_8_1; RH_1_8_1) (℃ and %, respectively), wind speed (WS_1_8_1) (m/s), wind direction (WD_1_8_1) (°), air pressure (PA_1_1_1) (hpa), precipitation (P_1_4_1) (mm), four-component radiation (SWIN_1_4_1, incoming shortwave radiation; SWOUT_1_4_1, outgoing shortwave radiation; LWIN_1_4_1, incoming longwave radiation; LWOUT_1_4_1, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (℃), photosynthetically active radiation (PPFD_1_4_1) (μmol/ (s m^2)), soil heat flux (SHF_1_5_1) (W/m^2), soil temperature (TS_1_20_1)(℃), soil moisture (SWC_1_20_1)(%, volumetric water content), soil water potential (SWP_1_20_1)(kpa), soil conductivity (EC_1_20_1)(μs/cm). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. Missing or abnormal data is replaced by – 6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2021-6-10 10:30.

    2022-05-17 446 0

  • Daily MODIS-based Land Surface Evapotranspiration Dataset of 2021 in Qilian Mountain Area (ETHi-merge V1.0)

    Daily MODIS-based Land Surface Evapotranspiration Dataset of 2021 in Qilian Mountain Area (ETHi-merge V1.0)

    This dataset contains daily land surface evapotranspiration products of 2021 in Qilian Mountain area. It has 0.01 degree spatial resolution. The dataset was produced based on Gaussian Process Regression (GPR) method by fusing six satellite-derived evapotranspiration products including RS-PM (Mu et al., 2011), SW (Shuttleworth and Wallace., 1985), PT-JPL (Fisher et al., 2008), MS-PT (Yao et al., 2013), SEMI-PM (Wang et al., 2010a) and SIM (Wang et al.2008). The input variables for the evapotranspiration products include MODIS products, and MERRA meteorological data.

    2022-05-12 296 15

  • Hydrological observation data of Central Asia's SYR River Basin (2021)

    Hydrological observation data of Central Asia's SYR River Basin (2021)

    This data is the hydrological data of the Khujand Hydrological Station in the middle reaches of the Syr Darya. The station is jointly constructed by the Urumqi Desert Meteorological Institute of the China Meteorological Administration, the Institute of Water Issues, Hydropower and Ecology of the National Academy of Sciences of Tajikistan, and the Tajikistan Hydrological and Meteorological Bureau. This data can be used for scientific research such as water resource assessment in Central Asia and services such as water conservancy projects. Data period: December 5, 2020 to September 11, 2021. Data elements: hourly flow velocity (m/s), hourly water level (m) and hourly rainfall (m) Site location: 40°17′38″N, 69°40′18″E, 320m 1. 300W-QX river velocity and water level observation instrument (1) Flow rate parameters: 1 Power supply voltage 12 (9~27) V(DC) 2 Working current 120 (110~135) mA 3 Working temperature (-40 ~85) °C 4 Measuring range (0.15 ~20) m/s 5 Measurement accuracy ±0.02m/s 6 Resolution 1mm 7 Detection distance 0.1~50 m 8 Installation height 0.15~ 25 m 9 sampling frequency 20sps (2) Water level parameters: 1 Measuring range 0.5~20 m 2 Measurement accuracy ±3 mm 3 Resolution 1 mm 4 Repeatability ±1mm 2. SL3-1 tipping bucket rain sensor 1 Water bearing diameter ф200mm 2 Measure the precipitation intensity within 4mm/min 3 measure the minimum division of 0.1mm precipitation 4 Maximum allowable error ±4%mm 3. Frequency of flow rate and observation instrument data acquisition: The sensor measures the flow rate and water level data every 5S 4. Hourly average flow rate calculation: The hourly average flow rate and water level data are calculated from the average of all flow rate and water level data measured every 5S within one hour

    2022-05-12 225 0

  • Hydrological data of Kafinigan hydrological station in Amu Darya River Basin,Central Asia (2021)

    Hydrological data of Kafinigan hydrological station in Amu Darya River Basin,Central Asia (2021)

    This data is the hydrological data of the Kaffinigan Hydrological Station, the upper tributary of the Amu Darya. The station is jointly constructed by the Urumqi Desert Meteorological Institute of the China Meteorological Administration, the Institute of Water Issues, Hydropower and Ecology of the National Academy of Sciences of Tajikistan, and the Tajikistan Hydrological and Meteorological Bureau. This data can be used for scientific research such as water resource assessment in Central Asia and services such as water conservancy projects. Data period: December 4, 2020 to September 4, 2021. Data elements: hourly flow velocity (m/s), hourly water level (m) and hourly rainfall (m) Site location: 37°36′01″N, 68°08′01″E, 420m 1. 300W-QX river velocity and water level observation instrument (1) Flow rate parameters: 1 Power supply voltage 12 (9~27) V(DC) 2 Working current 120 (110~135) mA 3 Working temperature (-40 ~85) °C 4 Measuring range (0.15 ~20) m/s 5 Measurement accuracy ±0.02m/s 6 Resolution 1mm 7 Detection distance 0.1~50 m 8 Installation height 0.15~ 25 m 9 sampling frequency 20sps (2) Water level parameters: 1 Measuring range 0.5~20 m 2 Measurement accuracy ±3 mm 3 Resolution 1 mm 4 Repeatability ±1mm 2. SL3-1 tipping bucket rain sensor 1 Water bearing diameter ф200mm 2 Measure the precipitation intensity within 4mm/min 3 measure the minimum division of 0.1mm precipitation 4 Maximum allowable error ±4%mm 3. Frequency of flow rate and observation instrument data acquisition: The sensor measures the flow rate and water level data every 5S 4. Hourly average flow rate calculation: The hourly average flow rate and water level data are calculated from the average of all flow rate and water level data measured every 5S within one hour

    2022-05-12 193 0

  • Human development resilience dataset for countries along the "Belt and Road" (2000-2020)

    Human development resilience dataset for countries along the "Belt and Road" (2000-2020)

    The Human Development Index (HDI) was developed by the United Nations Development Programme (UNDP) in the Human Development Report 1990 to measure the level of economic and social development of the United Nations member countries. The HDI is a composite indicator based on three basic variables: life expectancy, educational attainment and quality of life, and is calculated according to a certain methodology. "The One Belt One Road (OBOR) human development resilience dataset is a comprehensive indicator of human development resilience in each country. "The human development resilience dataset for countries along the Belt and Road is a comprehensive diagnosis based on sensitivity and adaptability analysis using year-by-year data of the Human Development Index for countries along the Belt and Road from 2000 to 2020. The Human Development Resilience Indicator (HDRI) data was prepared based on sensitivity and adaptation analysis. Please refer to the documentation for the methodology of preparing the dataset. "The Human Development Resilience Dataset for countries along the Belt and Road is an important reference for analysing and comparing the current state of human development resilience in each country.

    2022-05-05 212 61

  • Passive microwave SSM/I brightness temperature dataset for China (1987-2007)

    Passive microwave SSM/I brightness temperature dataset for China (1987-2007)

    This data set includes the microwave brightness temperatures obtained by the spaceborne microwave radiometer SSM/I carried by the US Defense Meteorological Satellite Program (DMSP) satellite. It contains the twice daily (ascending and descending) brightness temperatures of seven channels, which are 19H, 19V, 22V, 37H, 37V, 85H, and 85V. The Specialized Microwave Imager (SSM/I) was developed by the Hughes Corporation of the United States. In 1987, it was first carried into the space on the Block 5D-/F8 satellite of the US Defense Meteorological Satellite Program (DMSP) to perform a detection mission. In the 10 years from when the DMSP soared to orbit in 1987 to when the TRMM soared to orbit in 1997, the SSM/I was the world's most advanced spaceborne passive microwave remote sensing detection instrument, having the highest spatial resolution in the world. The DMSP satellite is in a near-polar circular solar synchronous orbit; the elevation is approximately 833 km, the inclination is 98.8 degrees, and the orbital period is 102.2 minutes. It passes through the equator at approximately 6:00 local time and covers the whole world once every 24 hours. The SSM/I consists of seven channels set at four frequencies, and the center frequencies are 19.35, 22.24, 37.05, and 85.50 GHz. The instrument actually comprises seven independent, total-power, balanced-mixing, superheterodyne passive microwave radiometer systems, and it can simultaneously measure microwave radiation from Earth and the atmospheric systems. Except for the 22.24 GHz frequency, all the frequencies have both horizontal and vertical polarization states. Some Eigenvalues of SSM/I Channel Frequency (GHz) Polarization Mode (V/H) Spatial Resolution (km * km) Footprint Size (km) 19V 19.35 V 25×25 56 19H 19.35 H 25×25 56 22V 22.24 V 25×25 45 37V 37.05 V 25×25 33 37H 37.05 H 25×25 33 85V 85.50 V 12.5×12.5 14 85H 85.50 H 12.5×12.5 14 1. File Format and Naming: Each group of data consists of remote sensing data files, .JPG image files and .met auxiliary information files as well as .TIM time information files and the corresponding .met time information auxiliary files. The data file names and naming rules for each group in the SSMI_Grid_China directory are as follows: China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V (remote sensing data); China-EASE-Fnn -ML/HaaaabbbA/D.ccH/V.jpg (image file); China-EASE-Fnn-ML/HaaaabbbA/D.ccH/V.met (auxiliary information document); China-EASE-Fnn-ML/HaaaabbbA/D.TIM (time information file); and China-EASE- Fnn -ML/HaaaabbbA/D.TIM.met (time information auxiliary file). Among them, EASE stands for EASE-Grid projection mode; Fnn represents carrier satellite number (F08, F11, and F13); ML/H represents multichannel low resolution and multichannel high resolution; A/D stands for ascending (A) and descending (D); aaaa represents the year; bbb represents the Julian day of the year; cc represents the channel number (19H, 19V, 22V, 37H, 37V, 85H, and 85V); and H/V represents horizontal polarization (H) and vertical polarization (V). 2. Coordinate System and Projection: The projection method is an equal-area secant cylindrical projection, and the double standard latitude is 30 degrees north and south. For more information on EASE-GRID, please refer to http://www.ncgia.ucsb.edu/globalgrids-book/ease_grid/. If you need to convert the EASE-Grid projection method into a geographic projection method, please refer to the ease2geo.prj file, which reads as follows. Input Projection cylindrical Units meters Parameters 6371228 6371228 1 /* Enter projection type (1, 2, or 3) 0 00 00 /* Longitude of central meridian 30 00 00 /* Latitude of standard parallel Output Projection GEOGRAPHIC Spheroid KRASovsky Units dd Parameters End 3. Data Format: Stored as binary integers, Row number: 308 *166,each datum occupies 2 bytes. The data that are actually stored in this data set are the brightness temperatures *10, and after reading the data, they need to be divided by 10 to obtain true brightness temperature. 4. Data Resolution: Spatial resolution: 25 km, 12.5 km (SSM/I 85 GHz); Time resolution: day by day, from 1978 to 2007. 5. The Spatial Coverage: Longitude: 60°-140° east longitude; Latitude: 15°-55° north latitude. 6. Data Reading: Each group of data includes remote sensing image data files, .JPG image files and .met auxiliary information files. The JPG files can be opened with Windows image and fax viewers. The .met auxiliary information files can be opened with notepad, and the remote sensing image data files can be opened in ENVI and ERDAS software.

    2022-05-05 15522 71