Data set of soil freezing depth in the future scenario of Qinghai Tibet Plateau Based on Stefan equation (2007-2017,2046-2065)

Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.

0 2022-07-22

Distribution map of the relationship between vegetation and freeze-thaw changes in the Arctic (1982-2015)

As an important part of the global carbon pool, Arctic permafrost is one of the most sensitive regions to global climate change. The rate of warming in the Arctic is twice the global average, causing rapid changes in Arctic permafrost. The NDVI change data set of different types of permafrost regions in the Northern Hemisphere from 1982 to 2015 has a temporal resolution of every five years, covers the entire Arctic Rim countries, and a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, GIS method and ecological method are used to quantify the regulation and service function of permafrost in the northern hemisphere to the ecosystem, and all the data are subject to quality control.

0 2022-07-15

Distribution data of permafrost in the source area of the Yellow River (2013-2015)

The distribution data of permafrost in the source area of the Yellow River is established based on the annual average ground temperature model of permafrost in the source area of the Yellow River. The annual average ground temperature of 0 ℃ is taken as the standard and boundary for dividing seasonal frozen soil and permafrost. Compared with the available permafrost maps of the source region of the Yellow River (1:3 million) and the permafrost background survey project of the Qinghai Tibet Plateau (1:1 million), the data set is based on the measured data of the Yellow River source area, which has higher consistency with the measured data, and the simulation accuracy of the permafrost distribution map is the highest. The data set can be used to verify the distribution of permafrost in the source area of the Yellow River, as well as to study the frozen soil environment.

0 2022-04-18

Distribution data of underground ice in permafrost regions of Qilian Mountains (2013-2015)

This data set is the distribution data of permafrost and underground ice in Qilian Mountains. Based on the existing borehole data, combined with the Quaternary sedimentary type distribution data and land use data in Qilian mountain area, this paper estimates the distribution of underground ice from permafrost upper limit to 10 m depth underground. In this data set, 374 boreholes in Qilian mountain area are used, and the indication function of Quaternary sedimentary type to underground ice storage is considered, so it has certain reliability. This data has a certain scientific value for the study of permafrost and water resources in Qilian Mountains. In addition, it has a certain promotion value for the estimation of underground ice reserves in the whole Qinghai Tibet Plateau.

0 2022-04-18

Spatial distribution data set of surface freezing and melting indexes of external dynamic environmental factors in Sanjiang Basin (average from 2003 to 2015)

Freezing (thawing) index refers to the sum of all temperatures less than (greater than) 0 ℃ in a year. Surface freezing (thawing) index is an important parameter to measure the time and capacity of surface freezing (thawing), which can reflect the characteristics of regional freezing and thawing environment. Based on the modis-lst data product, which comes from the national Qinghai Tibet Plateau science data center, the data in the Sanjiang River Basin are read by MATLAB language, and combined with the calculation of freezing (thawing index) formula, the spatial distribution data set of surface freezing and thawing index of dynamic environmental factors outside the Sanjiang River basin (average from 2003 to 2015) is obtained. This data set can better reflect the ability of surface freezing and thawing in the Sanjiang River Basin, so as to reflect the characteristics of regional freezing and thawing environment, It provides important external dynamic environmental factors for the development of freeze-thaw landslide.

0 2022-04-18

Permafrost soil bacteria in Barrow Peninsula, Arctic (2015)

This data includes the soil microbial composition data in permafrost of different ages in Barrow area of the Arctic. It can be used to explore the response of soil microorganisms to the thawing in permafrost of different ages. This data is generated by high through-put sequencing using the earth microbiome project primers are 515f – 806r. The region amplified is the V4 hypervariable region, and the sequencing platform is Illumina hiseq PE250; This data is used in the articles published in cryosphere, Permafrost thawing exhibits a greater influence on bacterial richness and community structure than permafrost age in Arctic permafrost soils. The Cryosphere, 2020, 14, 3907–3916, . This data can also be used for the comparative analysis of soil microorganisms across the three poles.

0 2021-04-09

Ground temperature data of the Yellow River source (2013-2015)

This data includes the ground temperature data of the source area of the Yellow River The main model of Permafrost Distribution in the source area of the Yellow River is constructed based on the permafrost boreholes and the measured ground temperature data. The temperature value of the permafrost on the sunny slope terrain is adjusted separately, and the fine-tuning model under the sunny slope terrain is established. The simulation results of the boreholes participating in the model construction are compared with the measured results, and the results show that the model is involved in the construction of the model The results show that the model is feasible to simulate the spatial distribution pattern of permafrost annual average ground temperature in the source area of the Yellow River

0 2020-10-29

Distribution data of underground ice in permafrost in the source area of the Yellow River (2013-2015)

The data includes the distribution data of underground ice in permafrost layer in the source area of the Yellow River. Based on the field data of 105 boreholes, such as landform and genetic type, permafrost temperature distribution, lithology composition and water content, the permafrost layer in the source area of the Yellow River is estimated to be 3.0-10.0 M The results show that the average ice content per cubic meter of soil in the source area of the Yellow River is close to the estimated value of underground ice storage in permafrost regions of the Qinghai Tibet Plateau calculated by Zhao Lin et al. The data is also of great significance for frozen soil prediction, evaluation of landscape stability in permafrost regions, and regional changes of topography, vegetation and hydrology caused by environmental changes.

0 2020-09-18

Spatial distribution data set of persistent organic pollutants in main ecosystems of three river source regions (2018)

This data set includes the concentration and distribution data of main persistent organic pollutants in the environmental media of Sanjiangyuan area. The samples were collected in May 2018, covering Sanjiangyuan Nature Reserve and its surrounding areas. The sample was prepared by Soxhlet extraction purification concentration and other pretreatment steps, and then determined by gas chromatography ion trap mass spectrometry. The target compounds include organochlorine pesticides, polychlorinated biphenyls, polycyclic aromatic hydrocarbons, etc. During sample pretreatment, mirex and pcb-30 were added as recovery markers. The internal standards for sample testing are PCNB and PCB-209. After calculation, the recovery of samples is generally between 60% - 101%.

0 2020-08-15

Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

0 2020-06-23