90-meter resolution geological hazard risk map of the Himalayas and Asia Water Tower (2021)

This data set collates and collects various geological hazard points, topographic relief, landslide, elevation, land use and other influencing factors, with a resolution of 90m. The above factor layers and sample data are used to obtain the risk grade map with random forest. Data sets / atlas are mainly generated by: raw data (investigation, collection and purchase, etc.), processing data (calculation and simulation). The data source is downloaded from the open source website with an accuracy of 90m. The data is downloaded from the open source website and calculated in spider with their own random forest code. The training set is 80% and the test set is 20%. Open it with a computer that can run ArcGIS.

0 2022-06-11

Map of flood hazard level of Qinghai-Tibetan Plateau (2021, 250m)

Based on the concept of Height Above Nearest Drainage ( HAND ) derived from the international digital elevation model, the HAND model was used to identify the flooded area, and the spatial distribution of flood hazard level in the flood area of the study area was established. Flood hazard in the study area is divided into 1-5 grades, of which 5 represent very high risk, 4 represent high risk, 3 represent medium risk, 2 represent low risk, 1 represent very low risk.

0 2022-06-10

Hengduan Mountain Area (Sichuan-Tibet railway) natural disaster risk and comprehensive risk assessment data set (2020)

Based on China's daily ground meteorological elements data set, national geographic basic data, demographic data, and 30M resolution DEM data, statistical yearbook data, historical disaster records, and other related data, using multi-methods like PCA, random forests to calculate hazard and vulnerability indicators, based on extreme precipitation,high temperature, flood, snow hazard, collapse and landslide hazards, to build comprehensive disaster risk index, and process them with normalization. Among them, we consider all the above disaster types in Hengduan Mountain area, and flood, snow disaster, collapse and landslide disaster in sichuan-tibet railway. The natural disasters hazard map, vulnerability map and comprehensive risk map of Hengduan Mountains (Sichuan-Tibet Railway) are included in the dataset.

0 2022-06-09

Rules for logging of field investigation images in Qinghai-Tibet Plateau (2020)

Log and image are unique and important primary data of field research, and also an important part of scientific data. In order to further standardize the collection, collation, warehousing and exchange of expedition logs and image data of the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau, and ensure the operability, organization and standardization of the warehousing of expedition logs and image data, this technical specification is formulated. This specification provides procedures and methods for the collection and collation of investigation logs and image data, including work preparation, field investigation, data collation and other requirements, in order to better serve the storage of investigation data. This specification applies to the collation and storage of log and image data of field investigations organized by the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau, and other relevant data formed by field investigations can also be carried out by reference to this technical specification.

0 2022-05-20

Standard for data convergence and quality control of geological environment and disaster risk investigation in Qinghai-Tibet Plateau (2020)

To fully implement the measures for the administration of the scientific data for the "government budget funding for formation of the scientific data shall, in accordance with the open as normal, not open for exception principle, by the competent department to organize the formulation of scientific data resources directory, the directory should be timely access to the national data sharing and data exchange platform, open to society and relevant departments to share, In the spirit of unimpeded military-civilian sharing channels for scientific data, and in accordance with the relevant requirements of relevant exchange standards and specifications, this code is now established for the second Comprehensive scientific investigation and research project on the Qinghai-Tibet Plateau. The main drafting unit of this code: Institute of Geographic Sciences and Natural Resources Research, CAS. Main draftsman of this specification: project group 9 of the second Comprehensive Scientific investigation and research Mission of qinghai-Tibet Plateau.

0 2022-05-20

Questionnaire on disaster risk prevention capacity and social vulnerability in Southeast Tibet (2021)

1) In recent years, with the global climate change, coupled with the internal dynamic disturbance and strong tectonic uplift, mountain disasters and floods in the Qinghai Tibet Plateau occur frequently, which poses a great threat to rural settlements in mountainous areas. Village disaster vulnerability and comprehensive risk prevention ability have gradually become an important topic of rural disaster prevention and reduction. 2) This data comes from a random questionnaire survey conducted from June to September 2021 in tuomai village, Lang Town, Lang County, Nyingchi City, Bangna village, Linzhi Town, Bayi District, xuewaka village, Gu township, Bomi County, Beibeng village, Beibeng Township, Motuo County, Xueni village, zhuwagen Town, Chayu County, Ranwu village, Ranwu Town, Basu County, Qamdo city and Zhuba village, Baima Town, Basu county, And the respondents are mainly adults familiar with family conditions. 3) Based on the principles of scientificity, applicability, feasibility, typicality and specificity, the questionnaire is designed for the individual villages around the Himalayas on the Qinghai Tibet Plateau. In order to ensure the reliability and validity of the design content of the questionnaire, a pre survey was conducted before the formal survey to further modify and improve the questionnaire. Before the formal start of the questionnaire survey, the investigators were explained the contents of the questionnaire and trained in survey skills. 4) A total of 231 questionnaires were completed, including 35 in tuomai village, 24 in Bangna village, 21 in xuewaka village, 38 in Beibeng village, 16 in Xueni village, 72 in Ranwu village and 25 in Zhuba village. The effective rate of the questionnaire was 98.6%.

0 2022-05-06

Integrated multi-hazard population risk in the peri-Himalayan and Asian water tower regions (2021)

This data uses a landslide hazard risk assessment model consisting of four modules: landslide hazard causative factors, landslide susceptibility model, exposed population and population casualty rate. The module of hazard-causing factors includes DEM, slope, rainfall, temperature, snow cover, GDP, and vegetation cover factors. The landslide hazard susceptibility model is a statistical analysis using a logistic regression model to obtain landslide susceptibility probability values. The population exposure module uses the landslide susceptibility values overlaid with population data. The population casualty rate module is based on the ratio of historical landslide casualties to the population exposed to landslides during the same period. Finally, by substituting the 2020 population data, the exposed population under different levels of landslide hazard susceptibility is calculated and multiplied with the historical period landslide hazard population casualty rate to assessIntegrated multi-hazard population risk in the peri-Himalayan and Asian water tower regions

0 2022-04-19

Permeability and permeability stability test data of soil materials with different dry densities

Data content: permeability and permeability stability test data of soil materials with different dry densities Data source: the test data orginated from each piezometer, osmometer, stopwatch and measuring cylinder. All instruments are submitted for inspection every year. Collection location and method: seepage Laboratory of Chinese Academy of Water Sciences. Test the dry density according to the gradation and sample preparation thickness. Collection time: August 1, 2020 to August 20, 2020 Data quality description: through the permeability and permeability stability test of piping soil material under different density and grading, the data content includes seepage flow, water head and time. The test data come from various pressure measuring tubes, osmometers, stopwatches and measuring cylinders, which were submitted for inspection every year.

0 2022-03-25

Permeability and permeability stability test data of soil materials with different fine particle amounts (2020)

Data content: permeability and permeability stability test data of soil materials with different fine particle amounts Data source: through the seepage and seepage stability test of piping soil material under different density and grading, the data content includes seepage flow, water head and time. Collection location and method: seepage Laboratory of Chinese Academy of water sciences. Test the dry density according to the gradation and sample preparation thickness. Collection time: August 1, 2020 to August 20, 2020 Data quality description: the test data are from various pressure measuring tubes, osmometers, stopwatches and measuring cylinders, and all instruments are submitted for inspection every year.

0 2022-03-25

Automatic division system source code of slope unit based on confluence analysis and slope direction Division

1) The work of automatically dividing a wide and complex geospatial area or even a complete watershed into repeatable and geomorphically consistent topographic units is still in the stage of theoretical concept, and there are great challenges in practical operation. Terrain unit is a further subdivision of topography and geomorphology, which can ensure the maximum uniformity of geomorphic features in slope unit and the maximum heterogeneity between different units. It is suitable for geomorphic or hydrological modeling, landslide detection in remote sensing images, landslide sensitivity analysis and geological disaster risk assessment. 2) Slope unit is an important type of topographic unit. Slope unit is defined as the area surrounded by watershed and catchment line. In fact, the area surrounded by watershed and catchment line is often multiple slopes or even a small watershed. Theoretically, each slope unit needs to ensure the maximum internal homogeneity and the maximum heterogeneity between different units. The slope unit is an area with obviously different topographic characteristics from the adjacent area. These topographic characteristics can be based on the characteristics of catchment or drainage boundary, slope and slope direction, such as ridge line, valley line, platform boundary, valley bottom boundary and other geomorphic boundaries. According to the high-precision digital elevation model, the slope unit with appropriate scale and quality can be drawn manually, but the manual drawing method is time-consuming and error prone. The quality of the divided slope unit depends on the subjective experience of experts, which is suitable for small-scale areas and has no wide and universal application value. Aiming at the gap in practical operation in this field, we propose an innovative modeling software system to realize the optimal division of slope units. Automatic division system of slope unit based on confluence analysis and slope direction division v1 0, written in Python programming language, runs and calculates as the grass GIS interpolation module, and realizes the automatic division of slope units in a given digital elevation data and a set of predefined parameters. 4) Based on python programming language, the code is flexible and changeable, which is suitable for scientific personnel with different professional knowledge to make a wide range of customization and personalized customization. In addition, the software can provide high-quality slope unit division results, reflect the main geomorphic characteristics of the region, and provide a based evaluation unit for fine landslide disaster evaluation and prediction. It can serve regional land use planning, disaster risk assessment and management, disaster emergency response under extreme induced events (earthquake or rainfall, etc.), and has great practical guiding significance for the selection of landslide monitoring equipment and the reasonable and effective layout and operation of early warning network. It can be popularized and applied in areas with serious landslide development.

0 2022-03-23