Data set of solar radiation at Qomolangma, China (2007-2020)

Global solar radiation at Qomolangma station (The Tibetan Plateau) is measured by radiation sensor (pyranometers CM22, Kipp & Zonen Inc., The Netherlands), and water vapor pressure (hPa) at the ground is measured by HMP45C-GM (Vaisala Inc., Vantaa, Finland). This dataset includes hourly solar radiation and its absorbing and scattering losses caused by the absorbing and scattering atmospheric substances (MJ m-2, 200-3600 nm), and the albedos at the top of the atmosphere and the surface. The above solar radiations are calculated by using an empirical model of global solar radiation (Bai, J.; Zong, X.; Ma, Y.; Wang, B.; Zhao, C.; Yang, Y.; Guang, J.; Cong, Z.; Li, K.; Song, T. 2022. Long-Term Variations in Global Solar Radiation and Its Interaction with Atmospheric Substances at Qomolangma. Int. J. Environ. Res. Public Health, 19, 8906. https://doi.org/10.3390/ijerph19158906). The observed global solar radiation and meteorological variables are available at https://data.tpdc.ac.cn/zh-hans/data/b9ab35b2-81fb-4330-925f-4d9860ac47c3/. The data set can be used to study solar radiation and its attenuation at Qomolangma region.

0 2022-08-14

Landsat-based continuous monthly 30m NDVI Dataset in Qilian mountain area in 2021 (V1.0)

Normalized Difference Vegetation Index (NDVI) is the sum of the reflectance values of the NIR band and the red band by the Difference ratio of the reflectance values of the NIR band and the red band. Vegetation index synthesis refers to the selection of the best representative of vegetation index within the appropriate synthesis cycle, and the synthesis of a vegetation index grid image with minimal influence on spatial resolution, atmospheric conditions, cloud conditions, observation geometry, and geometric accuracy and so on. This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly NDVI products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.

0 2022-06-21

Landsat-based continuous monthly 30m NPP Dataset in Qilian mountain area in 2021 (V1.0)

Net Primary Productivity (NPP) refers to the total amount of organic matter produced by photosynthesis in green plants per unit time and area. As the basis of water cycle, nutrient cycle and biodiversity change in terrestrial ecosystems, NPP is an important ecological indicator for estimating earth support capacity and evaluating sustainable development of terrestrial ecosystems. This data set includes the monthly synthesis of 30m*30m surface LAI products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly NPP products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.

0 2022-06-21

Landsat-based continuous monthly 30m FVC Dataset in Qilian mountain area in 2021 (V1.0)

Fractional Vegetation Coverage (FVC) is defined as the proportion of the vertical projection area of Vegetation canopy or leaf surface to the total Vegetation area, which is an important indicator to measure the status of Vegetation on the surface. In this dataset, vegetation coverage is an evaluation index reflecting vegetation coverage. 0% means that there is no vegetation in the surface pixel, that is, bare land. The higher the value, the greater the vegetation coverage in the region. This data set includes the monthly synthesis of 30m*30m surface vegetation index products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly FVC products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.

0 2022-06-21

Landsat-based continuous monthly 30m LAI Dataset in Qilian mountain area in 2021 (V1.0)

Leaf Area Index (LAI) is defined as half of the total Leaf Area within the unit projected surface Area, and is one of the core parameters used to describe vegetation. LAI controls many biological and physical processes of vegetation, such as photosynthesis, respiration, transpiration, carbon cycle and precipitation interception, and meanwhile provides quantitative information for the initial energy exchange on the surface of vegetation canopy. LAI is a very important parameter to study the structure and function of vegetation ecosystem. This data set includes the monthly synthesis of 30m LAI products in Qilian mountain area in 2021. Max value composition (MVC) method was used to synthesize monthly LAI products on the surface using the reflectivity data of Landsat 8 and sentinel 2 channels from Red and NIR channels.

0 2022-06-21

Dataset of classification, spatial distribution, and total accumulation of unconsolidated sediments in the Yarlung Tsangpo River Basin (2019–2022)

The considerable amount of solid clastic material in the Yarlung Tsangpo River Basin (YTRB)) is one of the important components in recording the uplift and denudation history of the Tibet Plateau. Different types of unconsolidated sediments directly reflect the differential transport of solid clastic material. Revealing its spatial distribution and total accumulation plays an important value in the uplift and denudation process of the Tibet Plateau. The dataset includes three subsets: the type and spatial distribution of unconsolidated sediments in theYTRB, the thickness spatial distribution, and the quantification of total deposition. Taking remote sensing interpretation and geological mapping as the main technical method, the classification and spatial distribution characteristics of unconsolidated sediments in the whole YTRB (16 composite sub-basins) were comprehensively clarified for the first time. Based on the field measurement of sediment thickness, the total accumulation was preliminarily estimated. A massive amount of sediment is an important material source of landslide, debris flow and flood disasters in the basin. Finding out its spatial distribution and total amount accumulation not only has theoretical significance for revealing the key information recorded in the process of sediment source to sink, such as surface environmental change, regional tectonic movement, climate change and biogeochemical cycle, but also has important application value for plateau ecological environment monitoring and protection, flooding disaster warning and prevention, major basic engineering construction, and soil and water conservation.

0 2022-05-30

Daily 1-km all-weather land surface temperature dataset for Western China (TRIMS LST-TP; 2000-2021) V2

The Qinghai Tibet Plateau is a sensitive region of global climate change. Land surface temperature (LST), as the main parameter of land surface energy balance, characterizes the degree of energy and water exchange between land and atmosphere, and is widely used in the research of meteorology, climate, hydrology, ecology and other fields. In order to study the land atmosphere interaction over the Qinghai Tibet Plateau, it is urgent to develop an all-weather land surface temperature data set with long time series and high spatial-temporal resolution. However, due to the frequent cloud coverage in this region, the use of existing satellite thermal infrared remote sensing land surface temperature data sets is greatly limited. Compared with the previous version released in 2019, Western China Daily 1km spatial resolution all-weather land surface temperature data set (2003-2018) V1, this data set (V2) adopts a new preparation method, namely satellite thermal infrared remote sensing reanalysis data integration method based on new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. This method makes full use of the high frequency and low frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST was used as the reference value, the mean deviation (MBE) of the data set in daytime and nighttime was -0.28 K and -0.29 K respectively, and the standard deviation (STD) of the deviation was 1.25 K and 1.36 K respectively. The test results based on the measured data of six stations in the Qinghai Tibet Plateau and Heihe River Basin show that under clear sky conditions, the data set is highly consistent with the measured LST in daytime / night, and its MBE is -0.42-0.25 K / - 0.35-0.19 K; The root mean square error (RMSE) was 1.03 ~ 2.28 K / 1.05 ~ 2.05 K; Under the condition of non clear sky, the MBE of this data set in daytime / night is -0.55 ~ 1.42 K / - 0.46 ~ 1.27 K; The RMSE was 2.24-3.87 K / 2.03-3.62 K. Compared with the V1 version of the data, the two kinds of all-weather land surface temperature show the characteristics of seamless (i.e. no missing value) in the spatial dimension, and in most areas, the spatial distribution and amplitude of the two kinds of all-weather land surface temperature are highly consistent with MODIS land surface temperature. However, in the region where the brightness temperature of AMSR-E orbital gap is missing, the V1 version of land surface temperature has a significant systematic underestimation. The mass of trims land surface temperature is close to that of V1 version outside AMSR-E orbital gap, while the mass of trims is more reliable inside the orbital gap. Therefore, it is recommended that users use V2 version. The time span of this data set is from 2000 to 2021 and will be updated continuously; The time resolution is twice a day (corresponding to the two transit times of aqua MODIS in the daytime and at night); The spatial resolution is 1 km. In order to facilitate the majority of colleagues to carry out targeted research around the Qinghai Tibet Plateau and its adjacent areas, and reduce the workload of data download and processing, the coverage of this data set is limited to Western China and its surrounding areas (72 ° E-104 ° E,20 ° N-45 ° N)。 Therefore, this dataset is abbreviated as trims lst-tp (thermal and reality integrating modem resolution spatial seamless LST – Tibetan Plateau) for user's convenience.

0 2022-05-16

Daily 1-km all-weather land surface temperature dataset for the Chinese landmass and its surrounding areas (TRIMS LST; 2000-2021)

Land surface temperature (LST) is one of the important parameters of the interface between the earth's surface and atmosphere. It is not only the direct reflection of the interaction between the surface and the atmosphere, but also has a complex feedback effect on the earth atmosphere process. Therefore, land surface temperature is not only a sensitive indicator of climate change and an important prerequisite for mastering the law of climate change, but also a direct input parameter of many models, which has been widely used in many fields, such as meteorology, climate, environmental ecology, hydrology and so on. With the deepening and refinement of Geosciences and related fields, there is an urgent need for all weather LST based on satellite remote sensing. The generation principle of this dataset is a satellite thermal infrared remote sensing reanalysis data integration method based on a new land surface temperature time decomposition model. The main input data of the method are Aqua MODIS LST products and GLDAS data, and the auxiliary data include vegetation index and surface albedo provided by satellite remote sensing. The method makes full use of the high-frequency and low-frequency components of land surface temperature and the spatial correlation of land surface temperature provided by satellite thermal infrared remote sensing and reanalysis data, and finally reconstructs a high-quality all-weather land surface temperature data set. The evaluation results show that this data set has good image quality and accuracy, which is not only seamless in space, but also highly consistent with the amplitude and spatial distribution of 1 km daily Aqua MODIS LST products widely used in current academic circles. When MODIS LST is used as reference, the mean deviation (MBE) of the data set is 0.08k to 0.16k, and the standard deviation of deviation (STD) is 1.12k to 1.46k. Compared with the daily 1km AATSR LST product released by ESA, the MBE and STD of the product are -0.21k to 0.25k and 1.27k to 1.36k during the day and night. Based on the measured data of 15 stations in Heihe River Basin, Northeast China, North China and South China, the test results show that the MBE is -0.06k to -1.17k, and the RMSE is 1.52k to 3.71k, and there is no significant difference between clear sky and non clear sky. The time resolution of this data set is twice a day, the spatial resolution is 1km, and the time span is from 2000 to 2021; The spatial scope includes the main areas of China's land (including Hong Kong, Macao and Taiwan, excluding the islands in the South China Sea) and the surrounding areas (72 ° E-135 ° E,19 ° N-55 ° N)。 This dataset is abbreviated as trims LST (thermal and reality integrating modem resolution spatial sealing LST) for users to use. It should be noted that the spatial subset of trims LST, trims lst-tp (1 km daily land surface temperature data set in Western China, trims lst-tp; 2000-2021) V2) has also been released in the national Qinghai Tibet Plateau scientific data center to reduce the workload of data download and processing for relevant users.

0 2022-05-16

A daily, 0.05° Snow depth dataset for Tibetan Plateau (2000-2018)

Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.

0 2022-04-18

Active landslides by InSAR recognition in Three-River-Parallel territory of Qinghai-Tibet Plateau (2007-2019)

Aiming at the 179000 km2 area of the pan three rivers parallel flow area of the Qinghai Tibet Plateau, InSAR deformation observation is carried out through three kinds of SAR data: sentinel-1 lifting orbit and palsar-1 lifting orbit. According to the obtained InSAR deformation image, it is comprehensively interpreted in combination with geomorphic and optical image features. A total of 949 active landslides below 4000m above sea level were identified. It should be noted that due to the difference of observation angle, sensitivity and observation phase of different SAR data, there are some differences in the interpretation of the same landslide with different data. The scope and boundary of the landslide need to be corrected with the help of ground and optical images. The concept of landslide InSAR recognition scale is different from the traditional spatial resolution and mainly depends on the deformation intensity. Therefore, some landslides with small scale but prominent deformation characteristics and strong integrity compared with the background can also be interpreted (with SAR intensity map, topographic shadow map and optical remote sensing image as ground object reference). The minimum interpretation area can reach several pixels. For example, a highway slope landslide with only 4 pixels is interpreted with reference to the highway along the Nujiang River.

0 2022-04-18