Glacier runoff segmentation data set in the five river source areas of the Qinghai Tibet Plateau (1971-2015)

The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.

0 2022-07-06

Qilian Mountains integrated observatory network: Dataset of Qinghai Lake integrated observatory network (an observation system of Meteorological elements gradient of Yulei station on Qinghai lake, 2021)

This dataset includes data recorded by the Qinghai Lake integrated observatory network obtained from an observation system of Meteorological elements gradient of Yulei station on Qinghai lake from Janurary 1 to December 31, 2021. The site (100° 29' 59.726'' E, 36° 35' 27.337'' N) was located on the Yulei Platform in Erlangjian scenic area, Qinghai Province. The elevation is 3209m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP155; 12 and 12.5 m above the water surface, towards north), wind speed and direction profile (windsonic; 14 m above the water surface, towards north) , rain gauge (TE525M; 10m above the water surface in the eastern part of the Yulei platform ), four-component radiometer (NR01; 10 m above the water surface, towards south), one infrared temperature sensors (SI-111; 10 m above the water surface, towards south, vertically downward), photosynthetically active radiation (LI190SB; 10 m above the water surface, towards south), water temperature profile (109, -0.2, -0.5, -1.0, -2.0, and -3.0 m). The observations included the following: air temperature and humidity (Ta_12 m, Ta_12.5 m; RH_12 m, RH_12.5 m) (℃ and %, respectively), wind speed (Ws_14 m) (m/s), wind direction (WD_14 m) (°) , precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), water temperature (Tw_20cm、Tw_50cm、Tw_100cm、Tw_200cm、Tw_300cm) (℃). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. As the lake water freezes in winter, the water temperature probe is withdrawn, so there is no water temperature data record during October 19, 2020 to December 31, 2020. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-1-1 10:30. Moreover, suspicious data were marked in red.

0 2022-06-30

Data set of flow-sediment processes in the Yarlung Zangbo River (2021)

To further investigate the transport process and temporal-spatial evolution of solid material in the Yarlung Zangbo River basin, the Sitting Bottom Bionic Water and sediment Observation System, which is the first set of good at the strong hydrodynamic condition and can continuously measure flow-sediment processes in real-time, was installed at Yangcun hydrology station by the sedimentary Dynamics observation team of Sichuan University on May 15, 2021. The bionic system was equipped with different types of observation equipment for water and sediment characteristics, which can measure the critical characteristics of water and sediment motion with high time resolution for a long time, continuously and synchronously. This data set contains the continuous data of 1) vertical velocity distribution (ADCP20210515.xlsx), 2) instantaneous velocity and turbulence of a single point near-bed, 3) Suspended sediment concentration measured by super turbidimeter (AOBS20210515.xlsx), 4) water depth, suspended sediment concentration and size distribution measured by Laser granulometer (Lisst20210515.xlsx). The data set with nearly a month recorded synchronous and continuous observation data of water and sediment characters with high temporal resolution per 10 minutes, which successfully observed the coupling change process of water and sediment under the increasing discharge of Yarlung Zangbo River. The simultaneous and continuous observation technology of water and sediment based on the bionic observation system provides technical support and scientific basis for revealing the source to sink process and evolution of Yarlung Zangbo River, bedload transport, flood numerical simulation, flash flood disaster warning and prevention, and major infrastructure construction.

0 2022-06-08

Data set of surface grain size distribution along the Nyangqu River in the Yarlung Zangbo River (2021)

The riverbed surface of the main channel in Nyangqu river is composed of gravel particles with wide grain size distribution. there are abundant gravel particles on the beach and riverbed. In this investigation, the bed surface grain size distribution of the main channel and tributaries of the Nyangqu river was measured. This data set contains the information of the five sampling locations in five main channels and two locations in tributaries of the Nyangqu River Basin (Table 1) and the bed surface grain size distribution (Table 2). The sampling locations were generally selected near the cross-section with obvious riverbed. It was considered that water flow through these sections in the straight channel for a long. At the same time, because it was a dry season, the bed grain size distribution on the river beach could be considered as the movement of gravel bedload carried by the last flood season. Therefore, it was considered that the bed grain size distribution in the sampling area on the river beach in the dry season was the bedload size distribution in the flood season. The grain size distributions were measured by the automatic identification method of full particle size based on image processing (e.g., Baserain software), with high identification accuracy of sediment particles is high. It is of great value to the scientific research on the evolution of source to sink process,bedlaod transport, and flood numerical simualtion, as well as the basic research on the flash flood prevention and control.

0 2022-06-07

Water index in the Qilian Mountain Area (2021)

This dataset contains the ground surface water (including liquid water, glacier and perennial snow) distribution in Qilian Mountain Area in 2021. The dataset was produced based on classical Normalized Difference Water Index (NDWI) extraction criterion and manual editing. Landsat images collected in 2021 were used as basic data for water index extraction. Sentinel-2 images and Google images were employed as reference data for adjusting the extraction threshold. The dataset was stored in SHP format and attached with the attributions of coordinates and water area. Consisting of 1 season, the dataset has a temporal resolution of 1 year and a spatial resolution of 30 meters. The accuracy is about 1 pixel (±30 meter). The dataset directly reflects the distribution of water bodies within the Qilian Mountain in 2021, and can be used for quantitative estimation of water resource.

0 2022-06-05

Hydrogen and oxygen stable isotope data set of groundwater and surface water in Naqu basin, the upper reaches of Nujiang River (2020-2021)

From September 3 to September 9, 2020, groundwater and surface water were collected in the upper reaches of Nujiang River Basin (i.e. Naqu basin in Nujiang River source area), and the samples were immediately put into 100 ml high density polyethylene (HDPE) bottles. 18O and D are analyzed and tested by liquid water isotope analyzer (picarro l2140-i, USA), and the stable isotope ratio is expressed by the thousand difference relative to Vienna "standard average seawater" (VSMOW). δ 18O and δ The analysis error of D is ± 0.1 ‰ and ± 1 ‰ respectively. It provides basic data support for subsequent analysis of groundwater source analysis in Naqu basin.

0 2022-06-01

Datasets of streamflow, evapotranspiration and precipitation in the Upper Heihe River Basin (1992-2015)

This data is the runoff and evapotranspiration generated by the precipitation in the growing season of the upper reaches of Heihe River from 1992 to 2015. Temporal resolution: year (growingseason), spatial resolution: 0.00833°. The data include precipitation (mm), evapotranspiration (mm), runoff (mm) and soil water content (m3 / m3). The data are obtained by using meteorological, soil and vegetation parameters based on Eagleson eco hydrological model. The simulated rainfall runoff is verified by using the observed runoff data in the growing season of 6 sub basins in the upper reaches of Heihe River (Heihe main stream, Babao River, yeniugou, Liyuan River, Wafangcheng and Hongshui River). The variation range of correlation coefficient (R) is 0.53-0.74, RMSE is 32.46-233.18 mm, and the relative error range is -0.66-0.0005; The difference between simulated evapotranspiration and gleam et is − 115.36 mm to 44.1 mm. The simulation results can provide some reference for hydrological simulation in the upper reaches of Heihe River.

0 2022-05-26

Hourly meteorological forcing & land surface state dataset of Tibet Plateau with 10 km spatial resolution (2000-2010)

The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.

0 2022-05-17

1 km resolution water conservation data set of Qinghai Tibet Plateau (2000-2020)

Water conservation service is an important ecosystem service, which directly affects the overall level of regional water resources and has an important impact on regional ecosystem, agriculture, industry, human consumption, hydropower, fishery and recreational activities. It is of great significance to maintain ecosystem stability and improve human well-being. Aiming at the production of water conservation products, based on the principle of water balance, coupled with the data of rainfall, evapotranspiration, solar radiation, temperature and vegetation type, the modeling of water conservation of ecosystem in national barrier area is studied. The water conservation service is calculated by the invest model based on the principle of water balance. The invest model has the advantages of less input data, large amount of export data and quantitative analysis of abstract ecosystem service functions. It is an important means of water conservation service evaluation at present. This method considers that the water conservation service is precipitation minus evapotranspiration, and the calculated indexes include annual precipitation and annual evapotranspiration. The precipitation data is based on the meteorological station data, the daily meteorological data is accumulated to the annual scale, and then interpolated to the space by ArcGIS spatial interpolation method; The calculation of evapotranspiration is realized by Zhang model. Taking multi-source data as the input variable of the invest model, the estimation of water conservation services in the Qinghai Tibet Plateau with a resolution of 1km from 2000 to 2020 is realized based on the parametric model.

0 2022-04-25

Data of annual lake area in the endorheic basin of the Qinghai-Tibet Plateau from 1986 to 2019

This data provides the annual lake area of ​​582 lakes with an area greater than 1 km2 in the enorheic basin of the Qinghai-Tibet Plateau from 1986 to 2019. First, based on JRC and SRTM DEM data, 582 lakes are identified in the area that are larger than 1 km2. All Landsat 5/7/8 remote sensing images covering a lake are used to make annual composite images. NDWI index and Ostu algorithm were used to dynamically segment lakes, and the size of each lake from 1986 to 2019 is then calculated. This study is based on the Landsat satellite remote sensing images, and using Google Earth Engine allowed us to process all Landsat images available to create the most complete annual lake area data set of more than 1 km2 in the Qinghai-Tibet Plateau area; A set of lake area automatic extraction algorithms were developed to calculate of the area of ​​a lake for many years; This data is of great significance for the analysis of lake area dynamics and water balance in the Qinghai-Tibet Plateau region, as well as the study of the climate change of the Qinghai-Tibet Plateau lake.

0 2022-04-19