China-Pakistan Economic Corridor and geological map of Tianshan Mountains (2013)

This dataset is the geological structure map of the China-Pakistan Economic Corridor and the Tianshan Mountains. The obtained geological map is a 1:2.5 million geological map, covering the China-Pakistan Economic Corridor and the Tianshan Mountains. Geological structural maps can provide a digital space platform for the informatization of the national economy, and provide information services for national and provincial departments for regional planning, geological disaster monitoring, geological surveys, prospecting and exploration, and macro decision-making. The obtained geological map data source is obtained by first scanning the paper version of the map, then performing georeferencing on the ArcGIS 10.5 platform, and then vectorizing it. The storage format is vector data, and the spatial granularity is divided into regions.

0 2022-05-23

Analysis data of elements, isotopes and chronology of deposits in Kunlun Mountain Area (2019-2022)

The data mainly include the study of typical porphyry deposits, skarn deposits, magmatic deposits and pegmatite deposits in Kunlun mountain area. Porphyry deposits, focus on determining the deep process and front response of mineralization, and then clarify the genetic model and metallogenic law; Skarn type deposit, focusing on the relationship between the migration and evolution of hydrothermal fluid and mineralization; Copper nickel sulfide deposit, focusing on finding out the location and mode of magma assimilation and contamination of the crust, and then revealing the melting and dissociation process of sulfide; Pegmatite type deposits focus on the migration behavior of elements in the process of magmatic hydrothermal transformation, and then reveal the enrichment mechanism of rare metals such as Li, be, Nb and Ta in pegmatites. The experimental data obtained this time is mainly through the collection of field scientific research samples, and the elements, isotopes and chronology of the collected ore and rock samples in summer hamu, kendecok, Dahongliutan and other mining areas. The preliminary research processing results show that the data quality is high.

0 2022-05-18

Geochemical data set of typical rare earth deposits in China (2017-2021)

The data set mainly includes typical rare earth deposits in China, such as Maoniuping and Lizhuang rare earth deposits in Mianning, Western Sichuan, and Gansha OBO rare earth deposits in Gansu Province. These rare earth deposits are genetically related to carbonate alkaline rock complex. In situ U-Pb dating, whole rock major and trace elements, Sr nd Pb radioisotopes, C-O-B-Ca stable isotopes and mineral in situ major and trace elements contents of rocks or ores in these complexes were analyzed. The major elements were measured by X-ray fluorescence spectrometer (XRF), the trace elements were measured by inductively coupled plasma mass spectrometry (ICP-MS), and the isotopes were mainly measured by mc-icp-ms. The main conclusions are as follows: (1) it is revealed that the magma source area of alkaline carbonate type REE deposit experienced the addition of strong subduction material, and its formation depth may be deeper than previously thought(2) It is revealed that the aegirization may be related to carbonatite and alkaline magmatism, and there may be differences in the aegirization between the two types of magma(3) The later reformation of the rare earth deposits with younger age may be relatively weak, while the rare earth deposits with older age are easy to be influenced by the later geological process and difficult to distinguish.

0 2022-04-19

SR Nd isotopic test data of granite in eastern Tibet

We have studied the Petrotectonic attributes of granites distributed in a large area in the North Lancangjiang structure in Bitu area. The major and trace elements and Sr Nd isotopes have been completed in the Key Laboratory of deposit geochemistry, Institute of geochemistry, Chinese Academy of Sciences. Among them, the main elements are analyzed by pw4400 X-ray fluorescence instrument, and the contents of 10 element oxides are determined; Trace elements are tested by ICP-MS inductively coupled plasma mass spectrometer. ICP-MS is manufactured by Agilent company in Tokyo, Japan, and the model is Agilent 7700x. The analysis method is the same as that of Zhang Xin, etc. According to the analysis results of standard sample gbpc-1de, the analysis error is less than 5%. MC-ICP-MS double focusing magnetic mass spectrometer with Neptune plus model is used for isotope test experiment. The test basis is GB / T 17672-1999.

0 2022-03-23

Jiama porphyry metallogenic system alteration and mineralization fine structure anatomy and deep resource positioning prediction report (2018-2021)

1) Data content: the data in this report involves the structural anatomy of Jiama porphyry metallogenic system and the geological logging information of key boreholes, the detailed alteration and mineralization characteristics of each ore body, as well as the technical methods of scientific deep drilling and deep resource exploration. It is the summary and refinement of deep resource exploration technology and methods, and has passed the expert review and acceptance. 2) Data source and processing: among them, the geological information of construction boreholes is mainly from the detailed geological logging in the field. Accurate mineralization information of boreholes comes from basic rock analysis data. CSAMT data comes from the measured data of other topics. It refers to the laboratory analysis and detection of mineral sources. 3) Comment on data quality: among them, the geochemical analysis data of borehole rocks are subject to the quality inspection of internal and external inspection in the laboratory and meet the relevant technical requirements. Other indoor research data (EPMA data) strictly refer to the test requirements and specifications and meet the quality requirements. 4) Data application achievements and prospects: the positioning and prediction method of deep resources in Jiama mining area can effectively predict deep high-grade resources. At the same time, it provides theoretical support for the breakthrough of deep and peripheral prospecting in the mining area and provides a reference basis for regional exploration and evaluation.

0 2022-03-12

Geochemical analysis and test data of 3000m scientific deep drilling rock of Jiama copper polymetallic deposit (2018-2022)

1) Data content: the data in this report is the rock geochemical analysis data of Jiama 3000m scientific deep drilling (main quantity + micro quantity), which is the data disclosure of detailed mineralization information of 3000m scientific deep drilling. 2) Data source and processing: data source: direct sample collection, cutting, crushing and rough grinding of field drilling, and final analysis in the laboratory. 3) Data quality review: the sample collection fully meets the relevant technical requirements. The sample test refers to the national geochemical analysis specifications and technical requirements, passes the internal and external inspection, and the final report passes the expert review and acceptance. 4) Data application achievements and prospects: the geochemical analysis data of Jiama mining area is a systematic summary of Jiama scientific deep drilling data, which is helpful to establish a typical geochemical exploration model.

0 2022-03-12

The fourth special achievement report of "Jiama Qulong copper polymetallic resource base deep exploration and reserve increase demonstration"

1) Data content: the data in this report mainly includes the thermal infrared and short wave infrared spectrum data of typical boreholes in Jiama mining area. It is the systematic hyperspectral measurement data of the typical section of Jiama porphyry metallogenic system. 2) Data source and processing: the data source is the direct measurement of field front-line instruments. Among them, the short wave infrared spectrum data is measured by fieldspec4 spectrometer produced by American ASD company, and the thermal infrared spectrum is measured by American Agilent 4300 thermal infrared spectrometer. 3) Data quality review: among them, the spectral data measurement is carried out according to the design requirements, and the spectral geologist is adopted ™ (TSG spectral geology expert) analysis software combined with microscopic identification, analysis and processing. 4) Data application achievements and prospects: the hyperspectral data of Jiama mining area is a systematic summary of the spectral data of Jiama thick and large skarn ore body, and a typical spectral exploration model is established, which is helpful to be applied to the exploration and evaluation of similar skarn deposits.

0 2022-03-11

Hyperspectral analysis data of typical boreholes in Jiama mining area, Tibet (2018-2022)

1) Data content: this data is the thermal infrared and short wave infrared spectrum data report of typical boreholes (including 3000m deep drilling) in Jiama mining area. It is the systematic hyperspectral measurement data of typical sections of Jiama porphyry metallogenic system. 2) Data source and processing: the data source is the direct measurement of field front-line instruments. Among them, the short wave infrared spectrum data is measured by fieldspec4 spectrometer produced by American ASD company, and the thermal infrared spectrum is measured by American Agilent 4300 thermal infrared spectrometer. 3) Data quality review: among them, the spectral data measurement is carried out according to the design requirements, and the spectral geologist is adopted ™ (TSG spectral geology expert) analysis software combined with microscopic identification, analysis and processing. 4) Data application achievements and prospects: the hyperspectral data of Jiama mining area is a systematic summary of the spectral data of Jiama thick and large skarn ore body, and a typical spectral exploration model is established, which is helpful to be applied to the exploration and evaluation of similar skarn deposits.

0 2022-03-11

Rawdata of Broadband seismic observation within Jiama-Qulong Deposits (2019-2021)

In this study, passive source seismology is used to systematically detect the metallogenic background of the ore concentration area. Therefore, 20 broadband seismic observation points are arranged in Jiama Qulong ore concentration area. The observation period is more than 12 months. The wide-band seismograph arranged in a plane is the integrated wide-band seismograph of nanomatrics horizon in Canada and cmg-3tde in the UK. The data format is minified. Before the actual field data acquisition, the seismometer, digital collector, GPS antenna and continuous power supply system used in the field data acquisition were tested before construction in Fuzhou City, Jiangxi Province, so as to ensure that the instrument can work normally in the field work. Most of the stations are located where the environmental interference is as small as possible to minimize the signal interference caused by human or other natural vibrations. However, due to the observation in the ore concentration area, some observation points cannot be avoided. Considering that the work area is located in Tibet, China, with strong light and large interference, in order to ensure high-quality and continuous waveform records on the basis of reducing instrument risks, we adopted the method of digging a pit to build a platform foundation, and established a platform foundation with unified specifications for each instrument. First, dig a large pit with a diameter of 80-90 cm and a depth of about 80 cm at the location where the station is to be arranged. Before digging the pit, ensure that the underground soil is the original soil rather than backfill. When digging the pit, it is best to dig the bedrock. Secondly, after the pit is excavated, arrange a prefabricated cement pier with a thickness of about 20cm and a diameter of about 30cm, then prepare a large plastic bucket with a volume of 200 L, dig holes at the bottom of the bucket, insert the bucket bottom after digging into the cement pier to the greatest extent, and then tamp it with cement or in-situ soil around the cement pier, And punch holes at the appropriate position where the barrel top is higher than the ground as the cable inlet and outlet. When the seismometer is put into the big bucket, a small bucket shall be buckled upside down on the seismometer to ensure that the seismometer is isolated from the small bucket. Finally, fill the inverted bucket and the upright bucket with high-strength sponge, stubborn. There are two advantages: first, it can isolate the seismometer and ensure the stability of internal temperature and pressure conditions; Second, it can ensure the stability of the environment in the barrel and reduce the background noise. Before installing the seismometer, the surface of the cement pier shall be dried first to ensure good contact between the supporting foot of the seismometer and the installation surface. Then use the geological compass for accurate orientation, mark the cement surface with plastic ruler, marker pen and other tools, and draw the pointing line. The pointing line should preferably pass through the center where the seismometer will be placed. After determining the orientation, place the seismometer on the drawn azimuth scale line, and rotate the seismometer to make the copper pointer at the bottom consistent with the pointing line (the copper pointer points to the East). It should be noted that the compass is easily affected by ferromagnetic objects during orientation. Therefore, the compass should be slightly away from sensors, iron tools, etc. Thirdly, connect the corresponding wire to the seismometer and wrap it around the instrument on the cement surface for several weeks. Finally, adjust the sensor foot screws to make the bubbles center and lock the screws. The broadband mobile seismic station observation adopts the continuous waveform recording method for data acquisition, the sampling rate is 100sps, and the GPS continuous signal receiving method is used for positioning, timing and clock calibration.

0 2022-03-10

Deep Probe of Geophysical Techniques for typical ore concentration area (2021)

Taking Jiama-Qulong ore concentration area as an example, a set of active and passive source electromagnetic / seismological joint survey technologies which is suitable for deep ore prospecting less than 3km deep is constructed. The detection results of active and passive electromagnetic sources have been verified by method of borehole physical properties, log data of Jiama 3km scientific drilling and tunnel IP anomaly. In addition, based on the preliminary verification of zegulang borehole physical properties within Jiama ore concentration area, Mogulang target area and one concealed ore body area are preliminarily proposed in this study. Using passive-source electromagnetic detection and high-frequency ambient noise surface-wave tomography of short-period dense array, it is revealed that there is a high-resistance and high-velocity anomaly body (temporarily defined as unravel porphyr deposite in Muchang area) exceeding the scale of geophysical anomaly of Jiama-Qulong ore concentration area. Combined with the results of other projects, Jiama and Qulong ore concentration areas and rock geophysical models, the unravel porphyr deposite in Muchang area has the characteristics of porphyry mineralization. Several high-conductor bodies are found under 5km deep between Qulong and Jiama and provide ore-forming material sources for the upper rock mass. Therefore, Jiama-Qulong ore concentration area has the potential conditions for a large resource base. Based on the comprehensive analysis of shallow and crustal S-wave velocity structure and receiver function obtained from passive source observation, the three large rock masses (Jiama, Muchang and Qulong) have common deep metallogenic background conditions. Taking N29.5 ° as the boundary, the crustal structure in the south is complex, which have characteristics as northward diping Moho, and obvious doublet Moho. And, the crust structure in the north is clearly simple, as relatively horizontal Moho. Due to strongly northward collision of Indian platin the south, the crustal structure changes obviously. There is an obvious interface below Moho in the northern region. Combined with the existing data, it is comprehensively speculated that the Jiama-Qulong ore concentration area locates in the key position of difference decoupling between the crust and lithospheric mantle and of Indian plat northward subducted beneath Gandese zone.

0 2022-03-10