Distribution data of available wind energy resources with 1km resolution in Qinghai Tibet Plateau (1979-2008)

The distribution data of available wind energy resources with 1km resolution in the Qinghai Tibet Plateau is based on the multi-year average wind speed in the Qinghai Tibet Plateau obtained by numerical simulation, and considering the constraints and restrictions of terrain, water body, urban and other land use on wind energy development, the comprehensive wind energy resource levels are very rich, rich, relatively rich and general. Set the land availability according to the terrain slope and land use type, deduct the 3km range around the town, divide the land availability into 5 intervals from 0 to 1 according to the interval of 0.2, and then divide the annual average wind speed into 4 intervals. The classification of wind energy resources is obtained through the combination of land availability and wind speed. The data are mainly used for detailed survey of wind energy resources and macro site selection of wind farms.

0 2022-05-31

Driving data of surface meteorological elements in the eastern Qinghai Tibet Plateau with a horizontal resolution of 3km * 3km and an hour (2010)

Based on the regional environment integrated system model developed by the Key Laboratory of regional climate and environment, Chinese Academy of Sciences, a regional climate model for convective analysis of the Qinghai Tibet Plateau is established. The grid center of the model simulation area is located at (34n, 100e), the horizontal resolution is 3km, and the number of simulation grid points of the model is 465 (longitude) x 375 (latitude). The vertical direction is 27 floors. The air pressure at the top of the model layer is 50 HPA. The buffer zone consists of 15 grids, the integration time is one year in 2010, and the horizontal resolution of the European medium range weather forecast center is 0.25x0 25. The reanalysis data of era5 with a time interval of 6 hours is used as the driving field to generate the driving data of surface meteorological elements on the Qinghai Tibet Plateau in 2010 with a horizontal resolution of 3 km * 3 km and a time interval of 1 hour After dynamic downscaling by using the convection analysis regional climate model of the Qinghai Tibet Plateau, the bottleneck problem of the lack of meteorological data sets with long-time series and high spatial-temporal resolution in the Qinghai Tibet Plateau and other regions is solved, so as to provide a solid and reliable scientific data foundation for the future change of climate and environment and the construction of ecological security barrier in the Qinghai Tibet Plateau.

0 2022-05-31

Glacier meteorological data from Wetern Pamir in Tajikstan (2021)

Tajikistan West Pamir Glacier Meteorological Station (38°3′15″N, 72°16′52″E, 3730m), the station is the Urumqi Desert Meteorological Institute of the China Meteorological Administration and the Tajikistan National Academy of Sciences for Water Issues, Water Energy and Ecology The Institute and the Tajikistan Hydrological and Meteorological Service are jointly constructed. Observation data includes hourly meteorological elements (average wind direction (°), average wind speed (m/s), wind direction at maximum wind speed (°), maximum wind speed (m/s), average temperature (°C), maximum Air temperature (°C), minimum air temperature (°C), average relative humidity (%), minimum relative humidity (%), average atmospheric pressure (hPa), maximum atmospheric pressure (hPa), minimum atmospheric pressure (hPa)). The data period is from December 10, 2020 to October 13, 2021 Meteorological observation data can provide important basic data for studying the relationship between climate change, glaciers and water resources in the West Pamir Mountains, and provide important data for the economic construction of the lower reaches of the Amu Darya River Basin in Tajikistan.

0 2022-05-23

1km resolution wind energy resource distribution data of Qinghai Tibet Plateau (1979-2008)

The 1km resolution wind energy resource data of Qinghai Tibet Plateau is developed by using the wind energy resource numerical simulation assessment system of China Meteorological Administration (weras / CMA), which includes typical terrain classification module, mesoscale model WRF and Calmet dynamic diagnosis model. Firstly, the typical days are randomly selected from the historical weather types for hourly wind speed simulation, and then the climate average distribution of wind energy resources is obtained according to the statistical analysis of the frequency of weather types. The data set includes wind speed and wind power density over the Qinghai Tibet Plateau. The data accuracy of wind speed is 0.01m/s, the data accuracy of wind power density is 0.01w/m2, and the vertical height of data is 100m. The data have been checked and corrected by the observation data of meteorological stations, and are mainly used for detailed investigation of wind energy resources and macro site selection of wind farms. This data is the output data of the national wind energy resources detailed survey and evaluation project from 2008 to 2012 (the project cost is 290 million yuan), and then becomes the basic data of wind energy resources related research. The Ministry of finance has no plan to invest in extending this data set in the near future.

0 2022-04-19

AWS data from typical glacier (2019-2020)

Qiangyong glacier: 90.23 °E, 28.88° N, 4898 m asl. The surface is bedrock. The record contains data of 1.5 m temperature, 1.5 m humidity, 2 m wind speed, 2 m wind orientation, surface temperature, etc. Data from the automated weather station was collected using USB equipment at 19:10 on August 6, 2019, with a recording interval of 10 minutes, and data was downloaded on December 20, 2020. There is no missing data but a problem with the wind speed data after 9:30 on July 14, 2020 (most likely due to damage to the wind vane). Jiagang glacier: 88.69°E, 30.82°N, 5362 m asl. The surface is rubble and weeds. The records include 1.5 meters of temperature, 1.5 meters of humidity, 2 meters of wind speed, 2 meters of wind direction, surface temperature, etc. The initial recording time is 15:00 on August 9, 2019, and the recording interval is 1 minute. The power supply is mainly maintained by batteries and solar panels. The automatic weather station has no internal storage. The data is uploaded to the Hobo website via GPRS every hour and downloaded regularly. At 23:34 on January 5, 2020, the 1.5 meter temperature and humidity sensor was abnormal, and the temperature and humidity data were lost. The data acquisition instrument will be retrieved on December 19, 2020 and downloaded to 19:43 on June 23, 2020 and 3:36 on September 25, 2020. Then the temperature and humidity sensors were replaced, and the observations resumed at 12:27 on December 21. The current data consists of three segments (2019.8.9-2020.6.30; 2020.6.23-2020.9.25; 2020.12.19-2020.12.29), Some data are missing after inspection. Some data are duplicated in time due to recording battery voltage, which needs to be checked. The meteorological observation data at the front end of Jiagang mountain glacier are collected by the automatic weather station Hobo rx3004-00-01 of onset company. The model of temperature and humidity probe is s-thb-m002, the model of wind speed and direction sensor is s-wset-b, and the model of ground temperature sensor is s-tmb-m006. The meteorological observation data at the front end of Jianyong glacier are collected by the US onset Hobo u21-usb automatic weather station. The temperature and humidity probe model is s-thb-m002, the wind speed and direction sensor model is s-wset-b, and the ground temperature sensor model is s-tmb-m006.

0 2022-04-18

Meteorological monitoring data of Kara-Batkak glacier in the Western Tianshan Mountains of Kyrgyzstan(2020)

Kara batkak glacier weather station in Western Tianshan Mountains of Kyrgyzstan (42 ° 9'46 ″ n, 78 ° 16'21 ″ e, 3280m). The observational data include hourly meteorological elements (hourly rainfall (mm), instantaneous wind direction (°), instantaneous wind speed (M / s), 2-minute wind direction (°), 2-minute wind speed (M / s), 10 minute wind direction (°), 10 minute wind speed (M / s), maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum wind direction (°), maximum wind speed (M / s), maximum wind speed time, maximum instantaneous wind speed within minutes) Direction (°), maximum instantaneous wind speed in minutes (M / s), air pressure (HPA), maximum air pressure (HPA), time of maximum air pressure, time of minimum air pressure (HPA), time of minimum air pressure. Meteorological observation elements, after accumulation and statistics, are processed into climate data to provide important data for planning, design and research of agriculture, forestry, industry, transportation, military, hydrology, medical and health, environmental protection and other departments.

0 2022-04-18

Conventional and satellite meteorological data in Central Asia (2017)

This data is conventional and satellite data of six hour resolution for the Great Lakes region of Central Asia. The conventional data include the observation of ground stations and sounding stations in the Great Lakes region of Central Asia and its surrounding areas (China, Kazakhstan, Kyrgyzstan, Turkmenistan, Tajikistan, Uzbekistan, Afghanistan, Russia, Iran, Pakistan, India, etc.), and the observation elements include temperature, pressure, wind speed and humidity, with the average number of stations in each time It is about 600, and the interval between stations is between 10-100km; the satellite data comes from the cloud guide wind retrieved by polar orbiting satellites (NOAA series and MetOp Series). All the data are from the global telecommunication system (GTS), and the observation data with poor quality are eliminated through quality control. The data can be applied to the data assimilation of the Great Lakes region in Central Asia, and also to the numerical simulation of the Great Lakes region in Central Asia.

0 2022-04-18

Meteorological observation data of Everest integrated atmospheric and environmental observation research station (2019-2020))

This meteorological data is the basic meteorological data of air temperature, relative humidity, wind speed, precipitation, air pressure, radiation, soil temperature and humidity observed in the observation site (86.56 ° e, 28.21 ° n, 4276m) of the comprehensive observation and research station of atmosphere and environment of Qomolangma, Chinese Academy of Sciences from 2019 to 2020. Precipitation is the daily cumulative value. All data are observed and collected in strict accordance with the instrument operation specifications, and some obvious error data are eliminated when processing and generating data The data can be used by students and scientific researchers engaged in meteorology, atmospheric environment or ecology (Note: when using, it must be indicated in the article that the data comes from Qomolangma station for atmospheric and environmental observation and research, Chinese Academy of Sciences (QOMS / CAS))

0 2022-01-27

Meteorological data set of Ngari Station for Desert Environment Observation and Research (2019-2020)

This data set records the meteorological data in the observation field of Ngari Station for Desert Environment Observation and Research (33 ° 23.42 ′ N, 79 ° 42.18 ′ E, 4270 m asl) from 2019 to 2020, with a time resolution of days. It includes the following basic parameters: air temperature (℃), relative humidity (%), wind speed (m/s), wind direction (°), air pressure (hPa), precipitation (mm), water vapor pressure (kPa), downward short wave radiation (W/m^2), Upward short wave radiation (W/m^2), Downward long wave radiation(W/m^2), Upward long wave radiation(W/m^2), Net radiation(W/m^2), Surface albedo (%), soil temperature (℃), soil water content (%). Sensor model of observation instrument: atmospheric temperature and humidity: HMP45C; Precipitation: t200-b; Wind speed and direction: Vaisala 05013; Net radiation: Kipp Zonen NR01; Air pressure: Vaisala PTB210; Soil temperature: 109 temperature probe; Soil moisture content: CS616. Data collector: CR1000. The time resolution of the original data is 30 min. The data can be used by scientific researchers engaged in meteorology, atmospheric environment or ecology.

0 2022-01-26

Meteorological data of surface environment and observation network in high and cold regions of China (2020)

1) Data content (including elements and significance): 19 stations of Alpine network (Southeast Tibet station, Namuco station, Everest station, mustage station, Ali station, Golmud station, Tianshan station, Qilian mountain station, Ruoergai station (2 points in total, Northwest Institute and Chengdu Institute of Biology), Yulong Snow Mountain station and Naqu station (including stations, Qinghai Tibet Institute, Northwest Institute and Geography Institute), Haibei Station, Sanjiangyuan station, Shenza station,, Lhasa station and Qinghai Lake Station) meteorological observation data set of Qinghai Tibet Plateau in 2020 (temperature, precipitation, wind direction and speed, relative humidity, air pressure, radiation and flux) 2) Data source and processing method: Excel format for field observation of 19 stations of Alpine network 3) Data quality description: Daily resolution of the station 4) Data application achievements and prospects: Based on the long-term observation data of field stations of the alpine network and overseas stations in the pan third pole region, a series of data sets of meteorological, hydrological and ecological elements in the pan third pole region are established; Complete the inversion of meteorological elements, lake water quantity and quality, aboveground vegetation biomass, glacier and frozen soil change and other data products through intensive observation in key areas and verification of sample plots and sample points; Based on the Internet of things technology, a multi station networked meteorological, hydrological and ecological data management platform is developed to realize real-time acquisition, remote control and sharing of networked data. In addition, the data set is an update of the meteorological data of the surface environment and observation network in China's high and cold regions (2019).

0 2022-01-22