Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Leaf area index of Daman Superstation, 2021)

This dataset contains the LAI measurements from the Daman superstation in the middle reaches of the Heihe integrated observatory network from July 22 to September 5 in 2021. The site (100.376° E, 38.853°N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. There are 3 observation samples, each of which is about 30m×30m in size, and the latitude and longitude are (100.374°E, 38.855°N), (100.371° E, 38.854°N), (100.369°E, 38.854°N). Four sub-canopy nodes and one above-canopy node are arranged in each sample. The data is obtained from LAINet measurements; the four-steps are performed to obtain LAI: the raw data is light quantum (level 0); the daily LAI can be obtained using the software LAInet (level 1); further the invalid and null values are screened and using the 5 days moving averaged method to obtain the processed LAI (level 2); for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.

0 2022-06-16

Data sets of ground air exchange fluxes and vertical gradients of air pollutants at Namco station (2019) and Southeast Tibet station (2021)

This data is obtained through observation at Namucuo multi cycle comprehensive observation and research station of Chinese Academy of Sciences (2019) and Tibetan southeast alpine environment comprehensive observation and research station of Chinese Academy of Sciences (2021), including the earth atmosphere exchange flux or vertical gradient of species such as O3, NOx, HONO, H2O and HCHO. The time range is from April 28, 2019 to July 10, 2019 (Namuco station) and from May 2, 2021 to May 13, 2021 (Southeast Tibet station). The data consists of five documents. Documents 1-4 are the flux data and H2O vertical gradient, HONO vertical gradient and NO2 vertical gradient observed at Namuco station in 2019. Document 5 is the flux data observed at Southeast Tibet station in 2021. During the monitoring period, data was missing due to instrument status problems. This data has broad application prospects and can serve graduate students and scientists with backgrounds such as atmospheric science, climatology, and ecology.

0 2022-06-13

Dataset of ground truth land surface evapotranspiration at the satellite pixel scale in the Heihe River Basin (from the single station observation to satellite pixel scale) Version 1.0

The evapotranspiration (ET) is an important variable connecting land energy balance, water cycle and carbon cycle. Accurate monitoring and estimations of ET are essential not only for water resources management but also for simulating regional, global climate, and hydrological cycles. Remote sensing technology is an effective method to monitor ET. At present, a variety of ET remote sensing products have been produced and released. However, in the process of validation, there is a problem of spatial scale mismatch between ET remote sensing estimation value and station observation value, especially on heterogeneous surface. Therefore, it is very important to obtain the ground truth ET values at the satellite pixel scale by upscaling method on heterogeneous surface. In this study, using the station observation data and multi-source remote sensing information, the ET observed at a single ground station is upscaled to the satellite pixel scale, and the ground truth ET values at the satellite pixel scale in Heihe River Basin is obtained. Based on the ET data observed by the eddy covariance (EC) at 15 stations (3 superstations and 12 ordinary stations) in the Heihe integrated observatory network, combined with the fused high-resolution remote sensing data (surface temperature, vegetation index, net radiation, etc.) and atmospheric reanalysis data, the upscaling is carried out to obtain the ground truth ET at the satellite pixel scale. The distribution diagram is shown in Figure 1. Specifically, firstly, the spatial heterogeneity of the spatial heterogeneity of the land surface hydrothermal conditions was evaluated; Secondly, nine upscaling methods (the integrated Priestley-Taylor equation method, the Penman-Monteith equation combined with EnKF method, the Penman-Monteith equation combined with SCE_UA method, EC observation value, artificial neural network, Bayesian linear regression, deep belief network, Gaussian process regression, and random fores and directly taking the EC observation value as the ground truth ET) were compared and analyzed through direct validation and cross-validation; Finally, a comprehensive method (directly using the EC observation value on the homogeneous underlying surface; using the Gaussian process regression method for upscaling on the moderately heterogeneous underlying surface and highly heterogeneous underlying surface) was optimized to obtain the groud truth ET at the satellite pixel scale at 15 typical underlying surfaces in Heihe River Basin (2010-2016, spatial resolution of 1km). The results showed that the ground truth ET at the satellite pixel scale is relatively reliable. Compared with the pixel scale reference value (LAS observation value), the MAPE of the ground turth ET at the satellite pixel scale at the three superstations are 1.57%, 3.23% and 4.59% respectively, which can meet the needs of the validation of ET remote sensing products. For all site information and data processing, please refer to Liu et al. (2018), and for upscaling methods, please refer to Li et al. (2021).

0 2022-06-10

Namuco station (2019) and Southeast Tibet station (2021) air pollutant flux and vertical gradient data set

This data is obtained through observation at Namucuo multi cycle comprehensive observation and research station of Chinese Academy of Sciences (2019) and Tibetan southeast alpine environment comprehensive observation and research station of Chinese Academy of Sciences (2021), including the earth atmosphere exchange flux or vertical gradient of species such as O3, NOx, HONO, H2O and HCHO. The time range is from April 28, 2019 to July 10, 2019 (Namuco station) and from May 2, 2021 to May 13, 2021 (Southeast Tibet station). The data consists of five documents. Documents 1-4 are the flux data and H2O vertical gradient, HONO vertical gradient and NO2 vertical gradient observed at Namuco station in 2019. Document 5 is the flux data observed at Southeast Tibet station in 2021. During the monitoring period, data was missing due to instrument status problems. This data has broad application prospects and can serve graduate students and scientists with backgrounds such as atmospheric science, climatology, and ecology.

0 2022-06-08

Pan-Third Pole Water Vapor Sounding (2009-2019)

As the “water tower of Asia”, the Tibetan Plateau has a profound impact on the global natural environment and climate change. Therefore, analyzing the distribution characteristics of troposphere-stratospheric water vapor over the Qinghai-Tibet Plateau is an important part of understanding the water vapor source and change characterize. In situ observations are limit in this region, and the water vapor sounding data set is needed. Therefore, we carried out balloon-borne measurements at Lhasa and Kunming over the Qinghai-Tibet Plateau, and then obtained the vertical distribution of water vapor in the troposphere and lower stratosphere over the Qinghai-Tibet Plateau. The dataset is named “Pan-Third Pole Water Vapor Sounding”, which is mainly the water vapor profile data obtained by balloon sounding conducted at Lhasa and Kunming in August from July 2009 to 2019. Altitude (Altitude), Water vapor (H2O), temperature (Temp), potential temperature (K), and air pressure (Press) from near the surface to 20 km are obtained by conventional balloons soundings payloaded with the Cryogenic Frost Point Hygrometer (CFH) and radiosonde (iMet). Data is transmitted in real time to the ground receiving station via a radiosonde.

0 2022-06-06

Near surface atmospheric oxygen content data of Qinghai Tibet Plateau (2017-2021)

1. The total number is the unified number of the survey year, such as 17-001 (the first survey point in 2017), and the field number is the single field number. 2. Time: Beijing time at the time of measurement, such as: 13:25, August 1, 2017 (13:25, August 1, 2017). 3. Geographical location: the longitude and latitude of the measuring point, such as 29.6584101.0884 (29.6584 ° n, 101.0884 ° E), which is measured by Garmin 63sc GPS in the field. 4. Altitude: the absolute altitude of the measuring point, such as 4500m (4500m above sea level), is measured by Garmin 63sc GPS in the field with an accuracy of 1m. 5. Measured vegetation coverage (%): measured in the field with quadrat (1000 m * 1000 m). 6. Atmospheric pressure: measured by dph-103 intelligent digital temperature and humidity barometer in the field, such as 651.7kpa, accuracy: 0.1 kPa. 7. Air temperature: measured by dph-103 intelligent digital temperature, humidity and barometer in the field, such as 15.61 ℃, accuracy: 0.01 ℃. 8. Relative humidity: measured by dph-103 intelligent digital temperature, humidity and barometer in the field, such as 79.1%, accuracy: 0.1%. 9. Relative oxygen content: measured by td400-sh-o2 portable oxygen detector in the field, such as 20.16%, accuracy: 0.01%. Among them, the altitude of sampling points 17-001 to 17-065 is measured by Garmin Oregon 450 GPS with an accuracy of 1 m; The atmospheric pressure is measured by Casio prg-130gc barometer with an accuracy of 5 HPA; The relative oxygen content is measured by cy-12c digital oxygen meter, with a range of 0-50.0%, a resolution of 0.1% and an accuracy of ± 1%.

0 2022-06-06

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Cosmic-ray observation system of soil moisture of Daman Superstation, 2021)

This dataset includes data recorded by the Heihe integrated observatory network obtained from a Cosmic-ray Soil Moisture Observing System of soil moisture of Daman Superstation from January 1 to December 31, 2021. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following: battery (Batt, V), temperature (T, ℃), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) neutron count differed from the previous value by more than 20%; 2) An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual; 3) After the quality control and corrections were applied, soil moisture was calculated using the equation in Zreda et al. (2012), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture by SoilNET within the footprint; 4) Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Zhu et al. (2015) for data processing) in the Citation section.

0 2022-06-05

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Large aperture scintillometer of Sidaoqiao Superstation, 2021)

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Sidaoqiao Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2021. There were BLS900 and BLS450 at Sidaoqiao Superstation. The north towers were set up with these instruments’ receivers and the south towers were transmitters. The site (north: 101.137° E, 42.008° N; south: 101.131° E, 41.987 N) was located in Ejinaqi, Inner Mongolia. The underlying surfaces between the two towers were tamarisk, populus, bare land and farmland. The elevation is 873 m. The effective height of the LAS was 25.5 m, and the path length was 2350 m. The data were sampled 1 minute. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900&BLS450:Cn2>7.25E-14). (2) The data were rejected when the demodulation signal was small (BLS900&BLS450:Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) were selected for BLS900 and BLS450. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is: 2021.03.15-2021.03.18;2021.9.12-2021.9.18. Several instructions were included with the released data. (1) The las data are firstly from BLS900, followed by BLS450, and finally the final missing data was marked with-6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.

0 2022-06-04

Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (Large aperture scintillometer of Daman Superstation, 2021)

This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Daman Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2021. There were two types of LASs at Daman Superstation: BLS900 and RR-RSS460, produced by Germany. The north tower was set up with the BLS900 receiver and the RR-RSS460 transmitter, and the south tower was equipped with the BLS900 transmitter and the RR-RSS460 receiver. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in Daman irrigation district, which is near Zhangye, Gansu Province. The underlying surfaces between the two towers were corn, orchard, and greenhouse. The elevation is 1556 m. The effective height of the LASs was 24.1 m, and the path length was 1854 m. The data were sampled 1 minute at both BLS900 and RR-RSS460. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS900:Cn2>7.25E-14,RR-RSS460:Cn2>7.84 E-14). (2) The data were rejected when the demodulation signal was small (BLS900:Average X Intensity<1000;RR-RSS460:Demod>-20mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl (1992) and Andreas (1988) were selected for BLS900 and RR-RSS460, respectively. Detailed can refer to Liu et al. (2011, 2013). Due to instrument adjustment and inadequate power supply, the date of missing data for the large aperture scintillator is: 2021.05.15-2021.06.10. Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the RR-RSS460 instrument. The missing data were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.

0 2022-06-04

Distribution data of available wind energy resources with 1km resolution in Qinghai Tibet Plateau (1979-2008)

The distribution data of available wind energy resources with 1km resolution in the Qinghai Tibet Plateau is based on the multi-year average wind speed in the Qinghai Tibet Plateau obtained by numerical simulation, and considering the constraints and restrictions of terrain, water body, urban and other land use on wind energy development, the comprehensive wind energy resource levels are very rich, rich, relatively rich and general. Set the land availability according to the terrain slope and land use type, deduct the 3km range around the town, divide the land availability into 5 intervals from 0 to 1 according to the interval of 0.2, and then divide the annual average wind speed into 4 intervals. The classification of wind energy resources is obtained through the combination of land availability and wind speed. The data are mainly used for detailed survey of wind energy resources and macro site selection of wind farms.

0 2022-05-31