File Naming Convention: Daily:YYYDOY_YYYYMMDD_daily_ET.tif (YYYY: year, DOY: Day of the year, MM: month, DD: day), as follow: 2013001_20130101_ET_daily.tif. Monthly: YYYY_MM_ET_monthly.tif (YYYY: year, MM: month), as follow: 2013_01_ET_monthly.tif. Year: YYYY_ET_yearly.tif (YYYY: year), as follow: 2013_ET_yearly.tif.
Projection: WGS_1984_UTM_Zone_47N;
Data Format, Size and Data type: GeoTIFF, 5505 rows*4027 columns and float;
Unit: daily (mm/day), monthly(mm/month), yearly(mm/year);
Data Version:Version 1.0.
MA Yanfei, LIU Shaomin. High-Temporal and Landsat-Like surface evapotranspiration in Heihe River Basin (2010-2016) (HiTLL ET V1.0). National Tibetan Plateau Data Center, 2020. doi: 10.11888/Hydro.tpdc.271081. (Download the reference: RIS | Bibtex )
Related Literatures:1. Ma, Y., Liu, S., Song, L., Xu, Z., Liu, Y., Xu, T., Zhu, Z. (2018). Estimation of daily evapotranspiration and irrigation water efficiency at a Landsat-like scale for an arid irrigation area using multi-source remote sensing data. Remote Sensing of Environment, 216, 715-734. https://doi.org/10.1016/j.rse.2018.07.019.( View Details | Bibtex)
2. Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., Wang, W., Qi, Y., Li, H., Xu, T., Ran, Y., Hu, X., Shi, S., Zhu, Z., Tan, J., Zhang, Y., Ren, Z. (2018). The Heihe Integrated Observatory Network: A basin‐scale land surface processes observatory in China. Vadose Zone Journal, 17,180072. https://doi.org/10.2136/vzj2018.04.0072.( View Details | Bibtex)
Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.
1.Li, X., Liu, S., Li, H., Ma, Y., Wang, J., Zhang, Y., Xu, Z., Xu, T., Song, L., Yang, X., Lu, Z., Wang, Z., Guo, Z. (2018). Intercomparison of six upscaling evapotranspiration methods: From site to the satellite pixel. Journal of Geophysical Research: Atmospheres, 123(13), 6777-6803. https://doi.org/10.1029/2018JD028422. (View Details )
2.Xu, T., Guo, Z., Liu, S., He, X., Meng, Y., Xu, Z., Xia, Y., Xiao, J., Zhang, Y., Ma, Y., Song, L. (2018). Evaluating different machine learning methods for upscaling evapotranspiration from towers to the regional scale. Journal of Geophysical Research: Atmospheres, 123(16), 8674-8690. https://doi.org/10.1029/2018JD028447. (View Details )
3.Liu, S., Xu, Z., Song, L., Zhao, Q., Ge, Y., Xu, T., Ma, Y., Zhu, Z., Jia, Z., Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. https://doi.org/10.1016/j.agrformet.2016.04.008. (View Details )
4.Xu, Z., Ma, Y., Liu, S., Shi, W., Wang, J. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56 (1), 127–140. https://doi.org/10.1175/JAMC-D-16-0096.1. (View Details )
5.Ma, Y., Liu, S., Zhang, F., Zhou, J., Jia, Z., Song, L. (2015). Estimations of regional surface energy fluxes over heterogeneous oasis–desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12 (3), 671–675. https://doi.org/10.1109/LGRS.2014.2356652. (View Details )
6.Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6 (1), 85–100. https://doi.org/10.5194/hess-6-85-2002. (View Details )
7.Jia, L., Su, Z., van den Hurk, B., Menenti, M., Moene, A., De Bruin, H.A., Yrisarry, J.J.B., Ibanez, M., Cuesta, A. (2003). Estimation of sensible heat flux using the Surface Energy Balance System (SEBS) and ATSR measurements. Physics and Chemistry of the Earth, Parts A/B/C, 28 (1–3), 75–88. https://doi.org/10.1016/S1474-7065(03)00009-3. (View Details )
8.He, J., Yang, K., Tang, W. Lu, H., Qin, J., Chen, Y.Y., Li, X. (2020). The first high-resolution meteorological forcing dataset for land process studies over China. Scientific Data, 7, 25, https://doi.org/10.1038/s41597-020-0369-y. (View Details )
9.Yang, K., He, J.,Tang, W.J., Qin, J., Cheng, C.C.K. (2010). On downward shortwave and longwave radiations over high altitude regions: Observation and modeling in the Tibetan Plateau. Agricultural and Forest Meteorology, 150(1), 38-46. https://doi.org/10.1016/j.agrformet.2009.08.004. (View Details )
10.YANG Kun, HE Jie. China meteorological forcing dataset (1979-2018). National Tibetan Plateau Data Center, 2019. DOI: 10.11888/Atmosp hericPhysics.tpe.249369.file. CSTR: 18046.11.AtmosphericPhysics.tpe.249369.file. (View Details )
Pan-Third Pole Environment Study for a Green Silk Road-A CAS Strategic Priority A Program (No:XDA20000000)
National Natural Science Foundation of China Youth Science Foundation Project
To respect the intellectual property rights, protect the rights of data authors,expand servglacials of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.
Example of acknowledgement statement is included below: The data set is provided by National Tibetan Plateau Data Center (http://data.tpdc.ac.cn).
License:
This work is licensed under an
Attribution 4.0 International (CC BY 4.0)
1.HiWATER: 1km/5day compositing vegetation index (NDVI/EVI) product of the Heihe River Basin, 2015
3.The evapotranspiration data in the Heihe River basin (2009-2011)
6.Precipitation stable isotopes data in Bomi (2008)
7.The leaf water potential dataset in the downstream of the Heihe River Basin (2012)
8.HiWATER: the albedo in the middle reaches of the Heihe River Basin (Jun. 29, 2012)
9.Long-term snow depth dataset of China (1978-2012)
10.Grassland interception dataset of Tianlaochi watershed in Qilian Mountain
No record
No record
Sign In to add comments
East: 101.81 | West: 97.12 |
---|---|
South: 37.71 | North: 42.68 |